Administrative supplement to support investigation into the structural basis of ubiquitin signaling in response to DNA alkylation damage
支持调查泛素信号传导响应 DNA 烷基化损伤的结构基础的行政补充
基本信息
- 批准号:10580459
- 负责人:
- 金额:$ 4.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAffectAffinityAlkylating AgentsAlkylationBindingBinding SitesBiochemistryBiophysicsCalorimetryCell DeathCell physiologyCellsCellular biologyChemistryCollaborationsColorComplexDNA AlkylationDNA DamageDNA Modification ProcessDNA RepairDNA Repair PathwayDNA Replication InhibitionDNA Sequence AlterationDNA lesionDefectDependenceDetectionDiagnosisDiseaseEventExposure toFirst Generation College StudentsGenomic InstabilityGoalsGrantHuman bodyInvestigationKnock-outKnowledgeLeftLinkLysineMeasuresModificationMolecularMutateNMR SpectroscopyPathway interactionsPolyubiquitinPopulation BiologyPrincipal InvestigatorProcessProliferatingPropertyProteinsProtomerRepair ComplexResearchResearch PersonnelResearch ProposalsSideSignal TransductionSiteSourceSpecificityStructureStudentsTherapeuticTimeTitrationsUBD proteinUbiquitinUniversitiesX-Ray Crystallographybiophysical propertiesbiophysical techniquescancer therapychemotherapycytotoxicexperimental studylower income familiesmutantnovelnucleobasepreventrecruitrepair enzymerepairedresponsestructural biologythree dimensional structuretumorundergraduate student
项目摘要
Project Summary/Abstract
DNA alkylation damage comprises a class of prevalent, harmful nucleobase modifications that occur thousands
of times per cell per day in the human body as a result of endogenous and exogenous sources. Left unrepaired,
DNA alkylation damage can result in genetic mutations, the inhibition of DNA replication, and cell death. Several
DNA repair pathways have evolved to reverse the numerous DNA modifications that result from alkylation
damage. While the repair enzymes in these pathways are well studied, much less is known about the upstream
signaling events that initiate DNA repair and localize repair complexes to damage sites. It was recently shown
that the ALKBH3-ASCC DNA repair complex is recruited to alkylation damage sites by binding chains of the
protein ubiquitin that are assembled in proximity to the DNA lesions. The protein ASCC2 is responsible for
binding the polyubiquitin chains that localize the ALKBH3-ASCC complex. A vast array of different types of
polyubiquitin chains are present in cells, however, and it is unclear how ASCC2 selectively recognizes the K63-
linked polyubiquitin chains that signal alkylation damage. The PI proposes to use a combination of structural
biology, cell biology, and biophysics to investigate ASCC2’s selectivity for K63-linked polyubiquitin chains and
the dependence of ALKBH3-ASCC complex localization on the unique ubiquitin-binding properties of ASCC2.
The specific aims of the project are: 1) to identify the novel ASCC2:ubiquitin binding interface that imparts
enhanced affinity for polyubiquitin chains, 2) to determine the structural basis of ASCC2’s specificity for binding
K63-linked polyubiquitin chains, and 3) to quantify the contribution of ASCC2’s ubiquitin-binding properties to
DNA alkylation damage repair. Investigating the outstanding questions associated with DNA alkylation damage
repair will allow clinicians to better understand diseases that result from defects in alkylation damage repair
pathways and to more effectively deploy alkylating agents as therapeutics, especially for the treatment of cancer.
Furthermore, these experiments will also provide valuable research opportunities for students at Mount St.
Mary’s University (MSMU), where substantial populations of the biology, chemistry, and biochemistry majors are
first-generation college students (16.7%), students of color (42.5%), or students from moderate- or low-income
families (27.1 % Pell Grant recipients). Overall, the proposed experiments will address a lack of knowledge in
the current understanding of DNA alkylation damage repair while greatly enhancing research opportunities for
students at MSMU.
项目摘要/摘要
DNA烷基化损伤包括一类普遍存在的、发生在数千次的有害的碱基修饰
作为内源性和外源性来源的结果,人体内每天每个细胞的次数。无人修理,
DNA烷基化损伤可导致基因突变、DNA复制抑制和细胞死亡。几个
DNA修复途径的进化逆转了烷基化引起的大量DNA修饰
损坏。虽然对这些途径中的修复酶进行了很好的研究,但对上游的修复酶知之甚少
启动DNA修复并将修复复合体定位到损伤位置的信号事件。它最近被放映了
ALKBH3-ASCC DNA修复复合体通过与
在DNA损伤附近组装的蛋白质泛素。ASCC2蛋白负责
结合定位ALKBH3-ASCC复合体的多泛素链。种类繁多的不同类型
然而,细胞中存在多泛素链,目前尚不清楚ASCC2如何选择性识别K63-
连接的多泛素链发出烷基化损伤的信号。PI建议使用结构上的组合
生物学、细胞生物学和生物物理学研究ASCC2‘S对K63连接的多泛素链和
ALKBH3-ASCC复合体的定位依赖于ASCC2独特的泛素结合特性。
该项目的具体目标是:1)确定新的ASCC2:泛素结合界面
增强多泛素链的亲和力,2)确定ASCC2的S结合特异性的结构基础
K63连接的多泛素链,以及3)量化ASCC2的S泛素结合特性对
DNA烷基化损伤修复。调查与DNA烷基化损伤相关的未决问题
修复将使临床医生更好地了解由于烷基化损伤修复缺陷而导致的疾病
目的是为了更有效地利用烷化剂作为治疗药物,特别是癌症的治疗药物。
此外,这些实验还将为圣彼得堡的学生提供宝贵的研究机会。
玛丽大学(MSMU),那里有大量的生物、化学和生物化学专业的学生
第一代大学生(16.7%)、有色人种学生(42.5%)或中低收入家庭学生
家庭(27.1%佩尔助学金获得者)。总体而言,拟议的实验将解决在
目前对DNA烷基化损伤修复的理解,同时极大地加强了对
密歇根州立大学的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Lombardi其他文献
Patrick Lombardi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Lombardi', 18)}}的其他基金
Determining the structural basis of polyubiquitin signaling in response to DNA alkylation damage
确定响应 DNA 烷基化损伤的多聚泛素信号传导的结构基础
- 批准号:
10796099 - 财政年份:2020
- 资助金额:
$ 4.96万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 4.96万 - 项目类别:














{{item.name}}会员




