Mechanisms of platelet stimulation in hemolysis
溶血中血小板刺激的机制
基本信息
- 批准号:10571830
- 负责人:
- 金额:$ 12.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAttenuatedBloodBlood Platelet DisordersBlood PlateletsBlood VesselsCellsComplexCysteineDataDevelopmentDevelopment PlansDiseaseDisulfidesElectron TransportEnvironmentErythrocytesEventExperimental ModelsFoundationsGenerationsGenetic DiseasesHMGB1 geneHaptoglobinsHemeHemoglobinHemolysisHemopexinHumanHypoxiaIncubatedInflammationInflammation MediatorsInflammatoryInfusion proceduresInstitute of Medicine (U.S.)Knock-outLifeLinkMass Spectrum AnalysisMeasurementMeasuresMediatingMembrane PotentialsMentorsMentorshipMitochondriaMolecularMusOxidation-ReductionPathogenesisPathway interactionsPatientsPatternPlasmaPlatelet ActivationPlatelet aggregationPlayPolymersProductionProteinsPulmonary HypertensionReactive Oxygen SpeciesReceptor SignalingRecombinantsResearchResearch PersonnelRespirationRiskRoleSickle Cell AnemiaSickle HemoglobinSignal PathwaySignal TransductionSterilityStimulantStimulusStrokeSulfhydryl CompoundsSurfaceTLR4 geneTherapeuticThrombosisThrombusTrainingTransgenic MiceUniversitiesWorkcareercareer developmentferric chloridehemoglobin polymerhigh riskimprovedin vivoinhibitormouse modelmultidisciplinarymutantnew therapeutic targetnoveloxidationpreventreceptorsynergismtherapeutic targetthromboticthrombotic complications
项目摘要
ABSTRACT
While sickle cell disease (SCD) is instigated by a mutant hemoglobin that polymerizes in hypoxia to cause
hemolysis and vaso-occlusion, inflammation plays a fundamental role in propagating this pathogenesis. SCD
patients are at significantly higher risk of thrombosis, which contributes to severe life-threatening complications
such as pulmonary hypertension and stroke. On a cellular level, it is well established that in SCD patients, platelet
activation is elevated and correlates with hemolysis. However, the contribution of inflammatory signaling to
platelet activation and its cross-talk with hemolysis remain unknown. High-mobility group box 1 (HMGB1), an
inflammatory mediator released by cells, has been shown to be elevated in the blood of SCD patients and to
stimulate platelet activation. Notably, the ability of HMGB1 to mediate platelet activation is dependent on the
oxidation state of critical cysteine residues in the protein. Preliminary data shows that HMGB1-mediated platelet
activation is significantly enhanced in the presence of cell-free hemoglobin (Hb), a major component of
hemolysis. Further, Hb and HMGB1 each independently increase platelet mitochondrial reactive oxygen species
(mtROS) generation, a known stimulus for platelet activation. Based on these data, I hypothesize that in SCD,
Hb oxidizes HMGB1 to increase platelet mtROS production leading to platelet activation and secondary release
of additional thrombotic stimulants including HMGB1 from platelets. Aim 1 will determine whether Hb oxidizes
HMGB1 to potentiate its activation of platelets using human healthy and sickle Hb and platelets in ex vivo
experimental models. Aim 2 will determine the mechanism by which HMGB1-induced mtROS stimulates platelet
activation. Aim 3 will utilize murine models of hemolysis to determine whether neutralizing HMGB1 attenuates
platelet activation and thrombus formation. Successful completion of these aims will elucidate a novel
mechanism of synergy between hemolysis and inflammatory signaling in potentiating thrombosis. This work will
reveal novel therapeutic targets and potential therapeutics for the treatment of thrombosis in SCD. In addition,
this project, along with the guidance of my multi-disciplinary mentorship team, career development plan, and
cutting-edge research environment at the Vascular Medicine Institute at the University of Pittsburgh, will serve
as a strong training vehicle to facilitate my independence as a researcher focused on mechanisms of thrombosis
in hemolytic disease.
摘要
虽然镰状细胞病(SCD)是由一种突变的血红蛋白引起的,这种血红蛋白在缺氧时聚合,
溶血和血管闭塞,炎症在传播这种发病机制中起着重要作用。SCD
患者发生血栓形成的风险明显更高,这会导致严重危及生命的并发症
例如肺动脉高压和中风。在细胞水平上,已充分确定在SCD患者中,血小板减少,
活化升高并与溶血相关。然而,炎症信号的贡献,
血小板活化及其与溶血的相互作用仍然未知。高迁移率族蛋白1(HMGB1),
由细胞释放的炎性介质,已经显示在SCD患者的血液中升高,
刺激血小板活化。值得注意的是,HMGB1介导血小板活化的能力依赖于血小板活化。
蛋白质中关键半胱氨酸残基的氧化态。初步数据显示,HMGB1介导的血小板
在无细胞血红蛋白(Hb)的存在下,活化显著增强,
溶血此外,Hb和HMGB1各自独立地增加血小板线粒体活性氧
(mtROS)生成,一种已知的血小板活化刺激。基于这些数据,我假设在SCD中,
Hb氧化HMGB1增加血小板mtROS产生,导致血小板活化和二次释放
额外的血栓形成刺激物,包括来自血小板的HMGB1。目标1将确定Hb是否氧化
使用人健康和镰状血红蛋白和血小板在离体中增强HMGB1对血小板的活化
实验模型目的2探讨HMGB1诱导线粒体活性氧刺激血小板的机制
activation.目的3将利用溶血的鼠模型来确定中和HMGB1是否减弱
血小板活化和血栓形成。成功地完成这些目标将阐明一部小说
溶血和炎症信号在增强血栓形成中的协同作用机制。这项工作将
揭示了新的治疗靶点和治疗SCD血栓形成的潜在疗法。此外,本发明还提供了一种方法,
这个项目,沿着我的多学科导师团队的指导,职业发展计划,
匹兹堡大学血管医学研究所的尖端研究环境将为
作为一个强有力的培训工具,以促进我作为一个专注于血栓形成机制的研究人员的独立性
溶血性疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deirdre Nolfi-Donegan其他文献
Deirdre Nolfi-Donegan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deirdre Nolfi-Donegan', 18)}}的其他基金
相似海外基金
A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
- 批准号:
24K02286 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Translation potential of an efficient method to generate live-attenuated and replication-defective DNA viruses for vaccine development
I-Corps:一种有效方法的转化潜力,可生成用于疫苗开发的减毒活病毒和复制缺陷型 DNA 病毒
- 批准号:
2420924 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Protecting Pigs From Enzootic Pneumonia: Rational Design Of Safe Attenuated Vaccines.
保护猪免受地方性肺炎:安全减毒疫苗的合理设计。
- 批准号:
BB/X017540/1 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Research Grant
A “Goldilocks” live attenuated poultry vaccine for Infectious Coryza
用于传染性鼻炎的“Goldilocks”家禽减毒活疫苗
- 批准号:
LP210301365 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Linkage Projects
A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
- 批准号:
10730832 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Combating melanoma with an attenuated bacterial therapeutic
用减毒细菌疗法对抗黑色素瘤
- 批准号:
10659841 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Investigating Host and Viral Factors for Improved Design of Future Live Attenuated Vaccines for IBV
研究宿主和病毒因素以改进未来 IBV 减毒活疫苗的设计
- 批准号:
BB/V016067/1 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别:
Research Grant
L2M NSERC-Bioengineering attenuated Sclerotinia sclerotiorum strains as bioherbicide for cereal production and lawn management
L2M NSERC-生物工程减毒核盘菌菌株作为谷物生产和草坪管理的生物除草剂
- 批准号:
576545-2022 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别:
Idea to Innovation