Disordered Proteins and Dynamic Interactions in Biology and Diseases.
生物学和疾病中的无序蛋白质和动态相互作用。
基本信息
- 批准号:10573331
- 负责人:
- 金额:$ 37.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAntineoplastic AgentsAreaBiologicalBiologyBiomedical ResearchCellsCollaborationsComplexComputing MethodologiesDecision MakingDiabetes MellitusDiseaseEpigallocatechin GallateFamilyFeedbackGoalsHeart DiseasesHumanImmuneLengthMalignant NeoplasmsMeasurementMediatingMethodologyMethodsMolecularMolecular ChaperonesMolecular ConformationMutationNamesNatural ImmunityNeurodegenerative DisordersPeptide HydrolasesPeroxidasesPharmaceutical PreparationsPhosphorylation SitePlayPrevalenceProcessPropertyProtein DynamicsProteinsResearchRoleSignal TransductionStaphylococcus aureusStructureSystemTP53 geneTestingTherapeuticTimeTransactivationVirulencecopinghuman diseaseinsightmethod developmentmodels and simulationmolecular modelingnovelprotein aggregationprotein foldingprotein functionprotein misfoldingprotein protein interactionprotein structure functionsimulationvirtual
项目摘要
Project Summary/Abstract
Recent recognition of the prevalence of intrinsically disordered proteins (IDPs) in biology and human diseases
has challenged the traditional paradigm that stable structure is required for protein function. Furthermore, many
IDPs have been found to remain disordered even in specific complexes and functional assemblies. These
discoveries have now dramatically expanded the meaning of “structure” in the protein structure-function
paradigm, to include a continuum from disordered ensembles to well-defined conformations. Importantly, these
disordered proteins and dynamic interactions are central components of the regulatory networks that dictate
virtually all aspects of cell decision-making. They are associated with a growing number of human diseases
including cancers, neurodegenerative diseases, diabetes and heart diseases. There is thus a crucial need to
establish the molecular basis of how conformational disorder mediates protein function, so as to understand how
these functional mechanisms may be perturbed in diseases, or rescued by drug molecules for therapeutics. The
key challenge towards achieving these overarching goals is quantitative description of the disordered protein
states in relevant biological and disease contexts. Experimental measurements of averaged structural properties
alone are inadequate to define the disordered protein ensemble, and reliable molecular simulations have a
crucial and transformative role to play. This project aims to continue to develop advanced molecular modeling
and simulation methodologies that can provide accurate description of disordered protein states, expand the
accessible time and length scales, and enhance our ability to embrace critical questions in molecular level
biomedical research. Through strategically chosen experimental collaborations, this project will further tackle
questions and problems centered around several systems of great biomedical significance: 1) To establish the
sequence-structure-function-disease relationship of IDPs, we will determine how multisite phosphorylation and
cancer-associated mutations modulate the structure, dynamics and interactions of the transactivation domain
(TAD) of tumor suppressor p53; 2) To develop effective strategies for targeting disordered protein states, we
will determine the molecular basis of how the anti-cancer drug EGCG inhibits p53-TAD through dynamic
interactions and study the functional dynamics and inhibition of flaviviral proteases; 3) To understand dynamic
protein-protein interactions in relevant contexts, we will determine the molecular basis of how molecular
chaperone Hsp70 achieves selective promiscuity to help the cell cope with protein folding challenge and how a
novel family of virulence protein named SPIN from S. aureus inhibits human myeloperoxidase for evading the
host innate immune defense. Integrated computational and experimental approaches deployed throughout these
studies will enable us to direct our computational method development efforts to critical areas for which advances
are needed, while at the same time push and test our methods with tangible feedback.
1
项目总结/摘要
生物学和人类疾病中固有无序蛋白(IDP)流行的最新认识
已经挑战了蛋白质功能需要稳定结构的传统范式。而且很多
已经发现,即使在特定的复合物和功能组件中,IDP也保持无序。这些
这些发现极大地扩展了蛋白质结构-功能中“结构”的含义,
范例,包括从无序合奏良好定义的构象连续。重要的是这些
无序的蛋白质和动态的相互作用是调控网络的核心组成部分,
实际上是细胞决策的所有方面。它们与越来越多的人类疾病有关
包括癌症、神经变性疾病、糖尿病和心脏病。因此,迫切需要
建立构象紊乱如何介导蛋白质功能的分子基础,以便了解如何
这些功能机制可能在疾病中受到干扰,或被用于治疗的药物分子挽救。的
实现这些总体目标的关键挑战是对无序蛋白质的定量描述
在相关的生物学和疾病背景下。平均结构特性的实验测量
单独的不足以定义无序的蛋白质系综,可靠的分子模拟具有
关键和变革性的作用。本项目旨在继续开发先进的分子建模
和模拟方法,可以提供无序蛋白质状态的准确描述,扩展了
可访问的时间和长度尺度,并增强我们在分子水平上接受关键问题的能力
生物医学研究通过战略选择的实验合作,该项目将进一步解决
问题和问题围绕着几个具有重大生物医学意义的系统:1)建立
IDPs的序列-结构-功能-疾病关系,我们将确定多位点磷酸化和
癌症相关突变调节反式激活结构域的结构、动力学和相互作用
(TAD)2)为了开发针对无序蛋白状态的有效策略,我们
将确定抗癌药物表没食子儿茶素没食子酸酯如何通过动态抑制p53-p53的分子基础。
相互作用,研究黄病毒蛋白酶的功能动力学和抑制; 3)了解动态
蛋白质-蛋白质相互作用的相关背景下,我们将确定如何分子的分子基础
伴侣Hsp 70实现选择性滥交,帮助细胞科普蛋白质折叠挑战以及如何
从S.金黄色葡萄球菌抑制人髓过氧化物酶,
宿主先天免疫防御综合计算和实验方法部署在这些
研究将使我们能够将我们的计算方法开发工作导向关键领域,
我们需要的,同时推动和测试我们的方法与有形的反馈。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianhan Chen其他文献
Jianhan Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianhan Chen', 18)}}的其他基金
Disordered Proteins and Dynamic Interactions in Biology and Diseases.
生物学和疾病中的无序蛋白质和动态相互作用。
- 批准号:
10330292 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Multi-scale enhanced sampling of disordered proteins
无序蛋白质的多尺度增强采样
- 批准号:
9379858 - 财政年份:2016
- 资助金额:
$ 37.98万 - 项目类别:
Multi-scale enhanced sampling of disordered proteins
无序蛋白质的多尺度增强采样
- 批准号:
9485621 - 财政年份:2016
- 资助金额:
$ 37.98万 - 项目类别:
SIMULATION OF SPONTANEOUS PEPTIDE INSERTION AND ASSEMBLY IN EPITHELIAL MEMBRANES
上皮膜中自发肽插入和组装的模拟
- 批准号:
8167832 - 财政年份:2010
- 资助金额:
$ 37.98万 - 项目类别:
SIMULATION OF SPONTANEOUS PEPTIDE INSERTION AND ASSEMBLY IN EPITHELIAL MEMBRANES
上皮膜中自发肽插入和组装的模拟
- 批准号:
7959802 - 财政年份:2009
- 资助金额:
$ 37.98万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 37.98万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 37.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 37.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 37.98万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 37.98万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 37.98万 - 项目类别: