An integrative computational interrogation of circuit dysfunction inschizophrenia via neural timescales
通过神经时间尺度对精神分裂症中的回路功能障碍进行综合计算询问
基本信息
- 批准号:10585148
- 负责人:
- 金额:$ 75.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBase of the BrainBiological MarkersCellsCognitionCognitive deficitsComplementComplexDataData ReportingDevelopmentDiagnosisDiseaseDistalEtiologyFoundationsFunctional Magnetic Resonance ImagingFunctional disorderGeneticGenotypeHumanHybridsIndividualLinkMeasuresMediator of activation proteinMethodsNeurocognitivePathway interactionsPatient Self-ReportPerformancePhenotypePopulationPublic HealthRestRoleSchizophreniaSelection for TreatmentsShort-Term MemorySpecificityTestingValidationWorkbehavioral phenotypingbiobankbiophysical modelcandidate markercell typeconnectome datagenetic risk factorgenome wide association studyindexingindividual patientinterestlarge scale datamultimodal datanovelphenomenological modelspsychotic symptomsrelating to nervous systemresponseschizophrenia risksecondary analysissocial stigmatheoriestrait
项目摘要
SUMMARY/ABSTRACT
Schizophrenia is a devastating and burdensome illness the mechanisms of which remain elusive. Contributing
to their elusiveness are a highly complex set of genetic factors, proposed etiological and pathophysiological
pathways, and phenotypic manifestations. To address this complexity, we propose a hybrid method combining
data-driven approaches to large-scale multimodal datasets and theory-driven computational approaches in
order to provide a theoretically constrained framework bridging genetics, development, circuit function,
cognition, and phenomenology of schizophrenia. To that end, and in response to ‘Notice of Special Interest
regarding the Use of Human Connectome Data (HCP) for Secondary Analysis’, we will use data from up to
64,000 individuals, including healthy individuals and patients with schizophrenia and other disorders, from
various HCP-related projects as well as the UK Biobank. We specifically propose measuring intrinsic neural
timescales (INT) from resting-state fMRI data as a theory-driven index of excitation/inhibition (E/I) imbalance in
cortical microcircuits. First, extending our prior work we aim to confirm and further characterize INT alterations
in schizophrenia (widespread trait-like INT reductions and local hierarchy-dependent INT modulations in
relation to psychotic symptoms) and to test their specificity relative to other disorders. Second, we will evaluate
the developmental trajectories of INT and characterize the genetic profile of this fMRI measure and its overlap
with the genetic profile for schizophrenia risk. Third, given the role of E/I ratio in cortical microcircuits in
supporting working-memory computations, we will examine the relationship between INT and working-memory
activation and performance. We will further seek to establish INT as a circuit-level mediator of polygenic risk for
schizophrenia on cognitive deficits. Throughout, we will use well-powered, rigorous, state-of-the-art fMRI and
statistical data-driven methods suitable for large-scale studies and HCP-style fMRI sequences, including cross-
validation and tests of generalizability. Together with a strong theoretical foundation and using biophysical
modeling to complement fMRI analyses, this hybrid—theory- and data-driven—approach will facilitate an
integrated understanding of the circuit-level mechanisms bridging distal genetic-risk factors and proximal
manifestations of schizophrenia. In particular, the combination of cutting-edge cell-type enrichment analyses of
GWAS (which in schizophrenia have suggested converging enrichment in excitatory and inhibitory cortical
cells) and biophysical modeling at the level of cortical microcircuits of interacting excitatory and inhibitory
cellular populations will provide an interpretation of disparate data in terms of convergent cell- and circuit-level
pathways. In doing so, this project will validate a theoretically informative, interpretable, translatable, and
scalable resting-state fMRI measure—INT—that may be relevant across several disorders and, which
additionally owing to its high reliability and ease of acquisition, has high potential as a candidate biomarker.
总结/摘要
精神分裂症是一种毁灭性的和沉重的疾病,其机制仍然难以捉摸。贡献
他们的难以捉摸是一个高度复杂的遗传因素,提出病因和病理生理学
途径和表型表现。为了解决这种复杂性,我们提出了一种混合方法,
大规模多模态数据集的数据驱动方法和理论驱动计算方法
为了提供一个理论上受约束的框架,桥接遗传学、发育、电路功能,
认知和精神分裂症的现象学。为此,为了回应“特别关注通知
关于使用人类连接组数据(HCP)进行二次分析,我们将使用
64,000人,包括健康人和精神分裂症及其他疾病患者,
各种HCP相关项目以及英国生物库。我们特别建议测量内在神经元
从静息态fMRI数据的时间尺度(INT)作为理论驱动的兴奋/抑制(E/I)不平衡的指标,
皮层微电路首先,扩展我们先前的工作,我们的目标是确认和进一步表征INT改变
在精神分裂症中(广泛的特质样INT降低和局部等级依赖性INT调节,
与精神病症状的关系),并测试其相对于其他疾病的特异性。第二,我们将评估
INT的发展轨迹,并描述这种功能磁共振成像测量的遗传特征及其重叠
精神分裂症风险的基因图谱第三,考虑到E/I比率在大脑皮层微回路中的作用,
支持工作记忆计算,我们将研究INT和工作记忆之间的关系
激活和性能。我们将进一步寻求建立INT作为多基因风险的回路水平介导者,
精神分裂症的认知缺陷在整个过程中,我们将使用强大的,严格的,最先进的功能磁共振成像,
统计数据驱动的方法,适用于大规模的研究和HCP风格的功能磁共振成像序列,包括交叉,
验证和测试的普遍性。加上强大的理论基础,并利用生物物理
作为对功能磁共振成像分析的补充,这种混合理论和数据驱动的方法将有助于
对桥接远端遗传风险因素和近端
精神分裂症的症状特别是,结合尖端的细胞类型富集分析,
GWAS(在精神分裂症中,这表明兴奋性和抑制性皮层的会聚富集,
细胞)和生物物理建模在皮层微电路的水平上相互作用的兴奋和抑制
细胞群将在会聚的细胞和电路水平上提供对不同数据的解释
途径。在这样做的过程中,这个项目将验证一个理论上信息丰富,可解释,可翻译,
可扩展的静息状态fMRI测量-INT-可能与几种疾病相关,
此外,由于其高可靠性和易于获得,具有作为候选生物标志物的高潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Horga其他文献
Guillermo Horga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Horga', 18)}}的其他基金
An integrative computational interrogation of circuit dysfunction inschizophrenia via neural timescales
通过神经时间尺度对精神分裂症中的回路功能障碍进行综合计算询问
- 批准号:
10704693 - 财政年份:2022
- 资助金额:
$ 75.71万 - 项目类别:
Individualized risk prediction in persons at clinical high-risk for psychosis using neuromelanin-sensitive MRI.
使用神经黑色素敏感 MRI 对临床精神病高危人群进行个体化风险预测。
- 批准号:
10166944 - 财政年份:2018
- 资助金额:
$ 75.71万 - 项目类别:
Individualized risk prediction in persons at clinical high-risk for psychosis using neuromelanin-sensitive MRI.
使用神经黑色素敏感 MRI 对临床精神病高危人群进行个体化风险预测。
- 批准号:
10412110 - 财政年份:2018
- 资助金额:
$ 75.71万 - 项目类别:
Deficient Belief Updating as a Convergent Computational Mechanism of Psychosis
信念更新不足作为精神病的收敛计算机制
- 批准号:
10421074 - 财政年份:2018
- 资助金额:
$ 75.71万 - 项目类别:
Deficient Belief Updating as a Convergent Computational Mechanism of Psychosis
信念更新不足作为精神病的收敛计算机制
- 批准号:
9766401 - 财政年份:2018
- 资助金额:
$ 75.71万 - 项目类别:
Neural mechanisms of sensory predictions in schizophrenia with hallucinations
精神分裂症幻觉感觉预测的神经机制
- 批准号:
9262998 - 财政年份:2014
- 资助金额:
$ 75.71万 - 项目类别:
Neural mechanisms of sensory predictions in schizophrenia with hallucinations
精神分裂症幻觉感觉预测的神经机制
- 批准号:
8700122 - 财政年份:2014
- 资助金额:
$ 75.71万 - 项目类别:














{{item.name}}会员




