Identifying factors associated with ovarian cancer recurrence using a population-based approach
使用基于人群的方法识别与卵巢癌复发相关的因素
基本信息
- 批准号:10581186
- 负责人:
- 金额:$ 13.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAreaAsianAwardBiologicalBiological MarkersBiometryBlack raceCancer EtiologyCancer PatientCancer PrognosisCancer SurvivorCarcinomaCategoriesCharacteristicsClassificationClinicalClinical DataClinical TrialsCommunicationComputational BiologyDataData SourcesDevelopmentDiagnosisDiseaseDisease ManagementDistressEpithelial ovarian cancerEventFosteringFoundationsFrightFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGleanGoalsGuidelinesHispanicHospitalizationIndividualInterventionKnowledgeLeadershipLinkMalignant NeoplasmsMalignant neoplasm of ovaryMedical RecordsMentorshipMolecularMorbidity - disease rateOperative Surgical ProceduresOvarianPathology ReportPatient CarePatientsPatternPerformancePopulationPopulation DatabaseProbabilityPrognosisPrognostic MarkerPublishingRecurrenceRecurrent Malignant NeoplasmResearchResearch PersonnelResearch Project GrantsResourcesRiskRisk AssessmentRisk FactorsSerousSourceSystemic TherapyTherapeuticTissue SampleTrainingTreatment ProtocolsUnited StatesUpdateUtahValidationWomanWorkWorld Health Organizationbiobankbiomarker developmentbiomarker drivenbrca genecancer diagnosiscancer epidemiologycancer recurrencecareer developmentclinical careclinical decision-makingclinical remissionclinical riskclinically relevantcohortdata analysis pipelinedata streamsepithelial to mesenchymal transitionexperiencefollow-upgenetic epidemiologyhigh riskimprovedmortalitymultiple data sourcespatient biomarkerspatient prognosispersonalized approachpopulation basedprognostictranscriptomicstreatment responsetumor
项目摘要
Ovarian cancer is the fifth leading cause of cancer related mortality in the United States. Despite advances in
surgical approaches and treatment regimens, overall survival has improved only marginally over the past thirty
years. Although nearly 80% of ovarian cancer patients will achieve complete clinical remission through surgery
and systemic therapy at their initial diagnosis, more than 50% will experience a recurrence by five years after
diagnosis. However, little is known about factors contributing to risk of ovarian cancer recurrence. Ovarian
cancer is a heterogeneous disease with distinct histotypes that inform prognosis. High grade serous carcinoma
is the most common histotype, comprising ~70% of all ovarian cancer diagnoses. Recently, three robust gene
expression signatures have been developed that have the potential to inform patient prognosis and biomarker-
driven therapeutic approaches. These tumor gene expression signatures include: a) the Milstein prognostic
score that distinguishes individuals with high and low probability of survival; b) the PrOTYPE classifier, which
categorizes four biologic subtypes; and c) the Oxford classifier, which identifies a poor prognosis epithelial-to-
mesenchymal transition score. Each signature correlates to differential with survival, suggesting that the
signatures may have clinical utility in informing patient prognosis; however, the scores have yet to be evaluated
in a population-based setting. Thus, the overarching goal of this proposal is to understand patient
demographic, clinicopathologic, and molecular features associated with patterns of ovarian cancer recurrence
and mortality. To do this, I will leverage the robust resources through the Utah Population Database to achieve
the following study aims: (1) Characterize patterns of ovarian recurrence and mortality by patient and
clinicopathologic characteristics; and (2) Compare the performance of three prognostic tumor gene expression
signatures with (a) mortality and (b) recurrence among high-grade serous ovarian cancer patients. The primary
training experience will focus on three areas: first, to develop expertise in the development and validation of an
algorithm to identify recurrence using multiple data streams; second, to develop expertise in transcriptomics
and data analysis pipelines for gene expression profiling; and third, to foster professional and career
development through leadership, scientific communication, and then transitioning to independence. The
research and training will be supported by an interdisciplinary mentorship team led by Dr. Jennifer Doherty,
and comprised of experts in ovarian cancer and genetic epidemiology, computational biology, and biostatistics.
The results from these aims will expand our understanding of factors contributing to risk and timing of ovarian
cancer recurrence and provide evidence on how gene expression signatures of high-grade serous ovarian
cancer can be incorporated into clinical risk assessment. Cumulatively, information gleaned from this work
could lead to a personalized approach to ovarian cancer disease management through inclusion of prognostic
markers in clinical care and the development of biomarker-driven therapies.
卵巢癌是美国癌症相关死亡的第五大原因。尽管取得了进展,但
手术方法和治疗方案,在过去30年中,总体存活率仅略有改善
好几年了。虽然近80%的卵巢癌患者将通过手术实现临床完全缓解
和系统治疗在最初诊断时,超过50%的人在五年后会复发
诊断。然而,人们对卵巢癌复发风险的影响因素知之甚少。卵巢
癌症是一种异质性疾病,具有不同的组织类型,决定着预后。高级别浆液性癌
是最常见的组织类型,约占所有卵巢癌诊断的70%。最近,有三个健壮基因
已经开发出有可能告知患者预后和生物标记物的表达特征。
驱动型治疗方法。这些肿瘤基因表达特征包括:a)Milstein预后
区分存活概率高和低的个体的分数;b)原型分类器,它
将四种生物学亚型分类;以及c)牛津分类器,该分类器识别预后不良的上皮到上皮
间充质转化评分。每个特征都与生存相关,这表明
签名可能在告知患者预后方面具有临床实用价值;然而,评分还有待评估。
在以人口为基础的环境中。因此,这项建议的首要目标是理解患者
与卵巢癌复发模式相关的人口学、临床病理和分子特征
和死亡率。为此,我将通过犹他州人口数据库利用强大的资源来实现
以下研究的目的是:(1)描述卵巢复发和死亡率的类型
临床病理特征;以及(2)比较三种预后肿瘤基因表达的表现
与(A)死亡率和(B)高级别浆液性卵巢癌患者复发有关的特征。初级阶段
培训经验将集中在三个方面:第一,在开发和验证
使用多数据流识别复发的算法;第二,发展转录学专业知识
和用于基因表达谱分析的数据分析管道;第三,促进专业和职业
通过领导、科学交流实现发展,然后过渡到独立。这个
研究和培训将由詹妮弗·多尔蒂博士领导的跨学科指导团队提供支持,
由卵巢癌和遗传流行病学、计算生物学和生物统计学方面的专家组成。
这些目标的结果将扩大我们对卵巢风险和时机选择因素的理解。
并为高级别浆液性卵巢癌的基因表达特征提供证据
癌症可以纳入临床风险评估。累积起来,从这项工作中收集到的信息
可以通过包含预后因素来实现卵巢癌疾病管理的个性化方法
临床护理中的标记物和生物标记物驱动疗法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lindsay Jane Collin其他文献
Lindsay Jane Collin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lindsay Jane Collin', 18)}}的其他基金
Biologic and Patient Variation Affecting Breast Cancer Treatment Efficacy
影响乳腺癌治疗效果的生物学和患者变异
- 批准号:
9760646 - 财政年份:2019
- 资助金额:
$ 13.96万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 13.96万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 13.96万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 13.96万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 13.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 13.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 13.96万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 13.96万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant














{{item.name}}会员




