Leveraging electronic health records to optimize treatment selection and response in multiple sclerosis

利用电子健康记录优化多发性硬化症的治疗选择和反应

基本信息

  • 批准号:
    10583784
  • 负责人:
  • 金额:
    $ 67.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-30 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY AND ABSTRACT The rapid expansion of approved multiple sclerosis (MS) disease-modifying therapies (DMTs) and the diverse individual variation in treatment response contribute to the critical unmet need for individually tailored treatment strategy for the nearly 3 million persons with multiple sclerosis (pwMS) worldwide. The shift towards a precision medicine approach to guide treatment selection based on individual profiles will improve patient outcome by ensuring prompt initiation of effective DMTs while avoiding ineffective DMTs. To fill the knowledge gaps due to the absence of randomized clinical trial evidence and to advance precision medicine for pwMS, it is crucial to harness available clinical data and develop approaches deployable at the point of care. Electronic health records (EHR) data contain a wealth of longitudinal real-world clinical information and provide a complementary platform for clinical discovery. Building on our prior research efforts, the proposed study has the overall goal to optimize DMT selection and patient outcomes in pwMS using EHR data. We will use EHR data from two academic healthcare systems, both ideally positioned as they contain longitudinal clinical information of thousands of pwMS and hold crucial linkage to MS research registries that provide the ground truth. For additional validation, we will use integrated claims and EHR data from a large population of commercially insured pwMS. Aim 1: Compare relapse outcomes across DMTs. We will test the hypothesis that confounder correction using full EHR features yields more robust and consistent results in DMT effectiveness comparison analysis than expert-selected covariates. We will test the generalizability by using a transfer learning approach. Aim 2: Identify patient clusters based on DMT prescription sequences over time. We will test the hypothesis that DMT prescription sequences inform differential patient clusters and MS outcomes. We will apply a covariate-adjusted mixture Markov Model. Aim 3: Identify optimal DMT sequences that predict favorable treatment response. We will test the hypothesis that optimized DMT prescription sequence(s) through reinforcement learning could improve MS outcomes (i.e., relapse rate, patient-reported outcomes). This research will close knowledge gaps due to absent randomized clinical trial evidence and limited real-world evidence to guide optimal MS treatment selection. It will bring precision medicine closer to pwMS by developing clinically deployable strategies to optimize treatment selection. This project is consistent with the mission of the NINDS to reduce the burden of neurological diseases such as MS.
项目总结和摘要 获批的多发性硬化症(MS)疾病修饰疗法(DMT)的快速扩张 治疗反应的个体差异导致了关键的未满足需求 为近300万多发性硬化症患者提供个性化治疗策略 (世界各地)。转向精确医学方法来指导治疗 基于个体特征的选择将通过确保及时启动来改善患者结局 有效的DMT,同时避免无效的DMT。为了填补知识空白, 由于缺乏随机临床试验证据,为了推进精准医学治疗多发性硬化症, 关键是利用现有的临床数据,并开发可在 在乎电子健康记录(EHR)数据包含大量纵向真实世界临床数据, 信息,并为临床发现提供补充平台。根据我们之前 研究工作,拟议的研究的总体目标是优化DMT的选择和患者 使用EHR数据的CIMMS结果。我们将使用来自两个学术医疗保健的EHR数据 系统,两者都是理想的定位,因为它们包含数千个 它与MS研究登记处有着至关重要的联系,这些登记处提供了基本事实。为 额外的验证,我们将使用来自大量人口的综合索赔和EHR数据, 有商业保险的保险公司。目的1:比较不同DMT的复发结果。我们将测试 假设使用完整的EHR特征进行混淆校正, 在DMT有效性比较分析中,结果与专家选择的协变量一致。 我们将通过使用迁移学习方法来测试可推广性。目标2:识别患者 基于DMT处方序列随时间的聚类。我们将检验这个假设, DMT处方序列告知不同的患者群和MS结果。我们将应用 协变量调整混合马尔可夫模型。目的3:确定最佳DMT序列, 预测良好的治疗反应。我们将测试优化DMT的假设, 通过强化学习的处方序列可以改善MS结果(即, 复发率,患者报告的结果)。这项研究将缩小知识差距, 缺乏随机临床试验证据和有限的现实世界证据来指导最佳MS 治疗选择它将通过临床开发使精准医学更接近于CIMMS 可部署的策略,以优化治疗选择。该项目与使命一致 的NINDS,以减少神经系统疾病的负担,如MS。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zongqi Xia其他文献

Zongqi Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zongqi Xia', 18)}}的其他基金

Real-world impact of the COVID-19 pandemic in people with multiple sclerosis
COVID-19 大流行对多发性硬化症患者的现实影响
  • 批准号:
    10549757
  • 财政年份:
    2022
  • 资助金额:
    $ 67.82万
  • 项目类别:
Real-world impact of the COVID-19 pandemic in people with multiple sclerosis
COVID-19 大流行对多发性硬化症患者的现实影响
  • 批准号:
    10344799
  • 财政年份:
    2022
  • 资助金额:
    $ 67.82万
  • 项目类别:
Leveraging genetics and environment to predict presymptomatic multiple sclerosis
利用遗传学和环境来预测症状前多发性硬化症
  • 批准号:
    8354374
  • 财政年份:
    2012
  • 资助金额:
    $ 67.82万
  • 项目类别:
Leveraging genetics and environment to predict presymptomatic multiple sclerosis
利用遗传学和环境来预测症状前多发性硬化症
  • 批准号:
    8463056
  • 财政年份:
    2012
  • 资助金额:
    $ 67.82万
  • 项目类别:
Leveraging genetics and environment to predict presymptomatic multiple sclerosis
利用遗传学和环境来预测症状前多发性硬化症
  • 批准号:
    8656454
  • 财政年份:
    2012
  • 资助金额:
    $ 67.82万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了