Learning Universal Patient Representations with Hierarchical Transformers

使用分层转换器学习通用患者表示

基本信息

  • 批准号:
    10587270
  • 负责人:
  • 金额:
    $ 64.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-07 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Electronic health records contain a wealth of information about patient health status that can be mined for multiple purposes, including clinical research and improved decision-making at the point of care. This information can be represented as structured variables, unstructured text, and images, among other data types. In this work, we develop new models for representing the unstructured text that take advantage of powerful neural models called pre-trained transformers. We propose to make these models usable for much longer texts by adding hierarchical layers to operate over summaries of smaller chunks of text, and shrinking the size of the encoder that operates on smaller chunks. First, we develop a smaller encoder for sentence and paragraph-sized texts, by using a technique called extreme distillation that trains smaller models from the output of larger models. We also propose to pre-train hierarchical models for text, by taking advantage of smaller encoders like that from the first aim. We take advantage of both public and private datasets and experiment with different pre-training tasks and architectures. Our final aim proposes to combine representations learned from text with those from the more mature areas of structured data and images. We design experiments that answer the question of how best to merge these different information sources, and apply them to important clinical classification use cases that are likely to require multiple information sources for accurate performance. Specifically, we address the clinical tasks of predicting injury severity in emergency departments, and predicting diagnosis and prognosis of patients in intensive care units.
项目摘要 电子健康记录包含了大量关于患者健康状况的信息,这些信息可以被挖掘出来, 多种用途,包括临床研究和改善护理决策。这 信息可以表示为结构化变量、非结构化文本和图像以及其他数据 类型在这项工作中,我们开发了新的模型来表示非结构化文本, 强大的神经模型,称为预先训练的变压器。我们建议使这些模型可用于 通过添加层次结构层来操作较小文本块的摘要, 对较小块进行操作的编码器的大小。首先,我们开发了一个更小的句子编码器, 段落大小的文本,通过使用一种称为极端蒸馏的技术, 大型模型的输出。我们还建议通过利用 像第一个目标那样的小编码器。我们利用公共和私人数据集, 尝试不同的预训练任务和架构。我们的最终目标是将联合收割机 从文本中学习的表示与来自结构化数据和图像的更成熟领域的表示进行比较。我们 设计实验,回答如何最好地合并这些不同的信息源的问题, 将它们应用于可能需要多个信息源的重要临床分类用例 以实现准确的性能。具体来说,我们解决的临床任务,预测损伤严重程度在紧急情况下, 部门,并预测重症监护病房患者的诊断和预后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy A Miller其他文献

Expression and localization of estrogen receptor-β in annulus cells of the human intervertebral disc and the mitogenic effect of 17-β-estradiol in vitro
  • DOI:
    10.1186/1471-2474-3-4
  • 发表时间:
    2002-01-17
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Helen E Gruber;Dean Yamaguchi;Jane Ingram;Kelly Leslie;Weibiao Huang;Timothy A Miller;Edward N Hanley
  • 通讯作者:
    Edward N Hanley
Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1) alter connexin 43 phosphorylation in MC3T3-E1 Cells
  • DOI:
    10.1186/1471-2121-2-14
  • 发表时间:
    2001-07-30
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Lance E Wyatt;Chi Y Chung;Brian Carlsen;Akiko Iida-Klein;George H Rudkin;Kenji Ishida;Dean T Yamaguchi;Timothy A Miller
  • 通讯作者:
    Timothy A Miller

Timothy A Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy A Miller', 18)}}的其他基金

Automated domain adaptation for clinical natural language processing
临床自然语言处理的自动领域适应
  • 批准号:
    9768545
  • 财政年份:
    2018
  • 资助金额:
    $ 64.82万
  • 项目类别:
Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
  • 批准号:
    8621974
  • 财政年份:
    2012
  • 资助金额:
    $ 64.82万
  • 项目类别:
Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
  • 批准号:
    8440695
  • 财政年份:
    2012
  • 资助金额:
    $ 64.82万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了