Automated domain adaptation for clinical natural language processing
临床自然语言处理的自动领域适应
基本信息
- 批准号:9768545
- 负责人:
- 金额:$ 38.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAdverse drug eventAlgorithmsApacheAreaCharacteristicsChildhoodClinicalClinical InformaticsClinical ResearchColon CarcinomaCommunitiesComputer softwareComputersConceptionsDataData SetData SourcesDetectionDimensionsEcosystemEducational process of instructingElectronic Health RecordEvaluationHumanInstitutionKnowledgeLabelLanguageLeadLearningLinguisticsMachine LearningMalignant NeoplasmsMalignant neoplasm of brainManualsMeasurementMeasuresMedicalMethodsModelingNatural Language ProcessingNetwork-basedOutputPathologyPatientsPerformancePharmaceutical PreparationsPopulationProcessPulmonary HypertensionRadiology SpecialtyResearchSoftware ToolsSourceStatistical ModelsStructureSystemTestingTextTimeLineTrainingUpdateVisionWorkbasecase findingimprovedlearning strategymalignant breast neoplasmmethod developmentnatural languageneural networknew technologynewsnovelopen sourcepoint of careside effectsocial mediasoftware systemsstatisticssupervised learningtooltumorunsupervised learning
项目摘要
Project Summary
Automatic extraction of useful information from clinical texts enables new clinical research tasks
and new technologies at the point of care. The natural language processing (NLP) systems that
perform this extraction rely on supervised machine learning. The learning process uses
manually labeled datasets that are limited in size and scope, and as a result, applying NLP
systems to unseen datasets often results in severely degraded performance. Obtaining larger
and broader datasets is unlikely due to the expense of the manual labeling process and the
difficulty of sharing text data between multiple different institutions. Therefore, this project
develops unsupervised domain adaptation algorithms to adapt NLP systems to new data.
Domain adaptation describes the process of adapting a machine learning system to new data
sources. The proposed methods are unsupervised in that they do not require manual labels for
the new data.
This project has three aims. The first aim makes use of multiple existing datasets for the same
task to study the differences in domains, and uses this information to develop new domain
adaptation algorithms. Evaluation uses standard machine learning metrics, and analysis of
performance is tightly bounded by strong baselines from below and realistic upper bounds, both
based on theoretical research on machine learning generalization. The second aim develops
open source software tools to simplify the process of incorporating domain adaptation into
clinical text processing workflows. This software will have input interfaces to connect to methods
developed in Aim 1 and output interfaces to connect with Apache cTAKES, a widely used open-
source NLP tool. Aim 3 tests these methods in an end-to-end use case, adverse drug event
(ADE) extraction on a dataset of pediatric pulmonary hypertension notes. ADE extraction relies
on multiple NLP systems, so this use case is able to show how broad improvements to NLP
methods can improve downstream methods. This aim also creates new manual labels for the
dataset for an end-to-end evaluation that directly measures how improvements to the NLP
systems lead to improvement in ADE extraction.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy A Miller其他文献
Expression and localization of estrogen receptor-β in annulus cells of the human intervertebral disc and the mitogenic effect of 17-β-estradiol in vitro
- DOI:
10.1186/1471-2474-3-4 - 发表时间:
2002-01-17 - 期刊:
- 影响因子:2.400
- 作者:
Helen E Gruber;Dean Yamaguchi;Jane Ingram;Kelly Leslie;Weibiao Huang;Timothy A Miller;Edward N Hanley - 通讯作者:
Edward N Hanley
Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1) alter connexin 43 phosphorylation in MC3T3-E1 Cells
- DOI:
10.1186/1471-2121-2-14 - 发表时间:
2001-07-30 - 期刊:
- 影响因子:2.700
- 作者:
Lance E Wyatt;Chi Y Chung;Brian Carlsen;Akiko Iida-Klein;George H Rudkin;Kenji Ishida;Dean T Yamaguchi;Timothy A Miller - 通讯作者:
Timothy A Miller
Timothy A Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy A Miller', 18)}}的其他基金
Learning Universal Patient Representations with Hierarchical Transformers
使用分层转换器学习通用患者表示
- 批准号:
10587270 - 财政年份:2019
- 资助金额:
$ 38.39万 - 项目类别:
Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
- 批准号:
8621974 - 财政年份:2012
- 资助金额:
$ 38.39万 - 项目类别:
Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
- 批准号:
8440695 - 财政年份:2012
- 资助金额:
$ 38.39万 - 项目类别:
相似海外基金
Artificial intelligence-based health IT tools to optimize critical care pharmacist resources through adverse drug event prediction
基于人工智能的健康 IT 工具,通过药物不良事件预测来优化重症监护药剂师资源
- 批准号:
10503268 - 财政年份:2022
- 资助金额:
$ 38.39万 - 项目类别:
Comparison of Hemorrhagic Risk between Prasugrel and Clopidogrel: a Retrospective Study using Adverse Drug Event Reporting Databases
普拉格雷和氯吡格雷出血风险的比较:使用药物不良事件报告数据库的回顾性研究
- 批准号:
18K14954 - 财政年份:2018
- 资助金额:
$ 38.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Adverse Reactions to Potent Opioids: An analysis using the largescale Japanese Adverse Drug Event Report database
对强效阿片类药物的不良反应:使用大型日本药物不良事件报告数据库进行的分析
- 批准号:
15K08111 - 财政年份:2015
- 资助金额:
$ 38.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementation and Evaluation of an Enhanced PharmaNet-Based Adverse Drug Event Reporting Platform to Improve Patient Safety and Meet Adverse Drug Reaction Reporting Requirements
基于 PharmaNet 的增强型药品不良事件报告平台的实施和评估,以提高患者安全并满足药品不良反应报告要求
- 批准号:
334597 - 财政年份:2015
- 资助金额:
$ 38.39万 - 项目类别:
Operating Grants
EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
- 批准号:
9123554 - 财政年份:2014
- 资助金额:
$ 38.39万 - 项目类别:
EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
- 批准号:
8772667 - 财政年份:2014
- 资助金额:
$ 38.39万 - 项目类别:
Integration of spatial epidemiology and pharmacoepidemiology for the practical use of the adverse drug event report database with related applications
空间流行病学和药物流行病学的整合,用于药物不良事件报告数据库的实际使用及相关应用
- 批准号:
26540012 - 财政年份:2014
- 资助金额:
$ 38.39万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Epidemiology of Adverse Drug Event in intensive care unit (ICU) and neonatal ICU (NICU)
重症监护病房(ICU)和新生儿重症监护病房(NICU)药品不良事件流行病学
- 批准号:
25860484 - 财政年份:2013
- 资助金额:
$ 38.39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optimizing Adverse Drug Event Reporting within a Provincial Medication Information System to Improve Pharmacovigilence and Inform Pharmaceutical Policy
优化省级药品信息系统内的药品不良事件报告,以提高药物警戒并为药品政策提供信息
- 批准号:
284162 - 财政年份:2013
- 资助金额:
$ 38.39万 - 项目类别:
Fellowship Programs
Adverse Drug Event Reporting in PharmaNet to Improve Patient Safety and Inform Policy
PharmaNet 中的药物不良事件报告可提高患者安全并为政策提供信息
- 批准号:
273419 - 财政年份:2012
- 资助金额:
$ 38.39万 - 项目类别:
Operating Grants