Biological Spectroscopy and Crystallography Using an X-ray Free Electron Laser
使用 X 射线自由电子激光进行生物光谱学和晶体学
基本信息
- 批准号:10587180
- 负责人:
- 金额:$ 54.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Active SitesBindingBiochemical ReactionBiologicalBiologyCatalytic DomainChargeChemical DynamicsChemicalsChemistryCollaborationsComplexCrystallographyCytochrome P450DataData AnalysesData CollectionData CorrelationsDevelopmentDiffusionElectron TransportElectronicsElectronsElementsEngineeringEnvironmentEnzymesEventEvolutionFluorescenceGenerationsGeometryGoalsHemeHomoHydrogen BondingHydrogenaseHydroxyl RadicalIn SituKineticsMeasurementMembraneMetalloproteinsMetalsMethaneMethane Metabolism PathwayMethane hydroxylaseMethodologyMethodsMonitorMononuclearNatureNuclearOxidasesOxidation-ReductionOxidoreductaseOxygenOxygenasesPhysiologic pulsePhysiologicalPropertyProtein DynamicsProteinsProtocols documentationProtonsRadiation induced damageReactionResolutionRibonucleotide ReductaseRoentgen RaysSamplingSignal TransductionSiteSourceSpecificitySpectrum AnalysisSpeedStructureSynchrotronsSystemTechniquesTemperatureTimeTransition ElementsVisualizationWaterWidthX ray diffraction analysisX ray spectroscopyX-Ray CrystallographyXray Emission Spectroscopyabsorptionanalogbiological systemscatalystcofactorcopper oxidasecryogenicsdesignelectronic structureemission spectroscopyenzyme structureexperimental studyflexibilitygeometric structureinsightinterestisopenicillin Nmetal complexmetallicitymetalloenzymenovelnovel strategiesoxidationprotein structurespectroscopic datatoolx-ray free-electron laser
项目摘要
Project Summary/Abstract
The goal of this proposal is to understand nature’s well-controlled chemistry that occurs in
metalloenzymes, by developing the necessary tools and applying them to follow the structural dynamics of the
protein and chemical dynamics of the metal-catalyst. For this purpose, we will use X-ray crystallography and
X-ray spectroscopy techniques at X-ray Free Electron Lasers (XFELs).
Although the structure of enzymes and the chemistry at the catalytic sites have been studied
intensively, an understanding of the atomic-scale chemistry requires a new approach beyond the conventional
steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic
changes in the geometric and electronic structure of metalloenzymes at ambient temperature, while
overcoming the severe X-ray damage to the redox active catalytic center, is key for deriving the reaction
mechanism. The intense and ultra-short femtosecond (fs) X-ray pulses from XFELs provide an opportunity to
overcome the current limitations of room temperature data collection for biological samples at synchrotron X-
ray sources. The fs X-ray pulses with shot-by-shot sample replacement make it possible to acquire the signal
before damage occurs and the sample is destroyed.
We will design and apply a suite of time-resolved X-ray diffraction and X-ray absorption/emission
spectroscopy methods, that make use of the unique properties of the XFEL beam. This will provide an
unprecedented combination of correlated data between the protein and the co-factors, all of which are
necessary to understand the interplay between the geometric structure of the protein and electronic structure
of the metal complex, and the functional consequences. Spectroscopy, both emission and absorption
spectroscopy, will provide the time-evolution of the electronic structure, while simultaneous room temperature
X-ray crystallography will help us visualize the changes in the geometric structure of the overall protein.
We will use these methodologies to study some of the most important metalloenzymes in biology to
gain insights into the catalytic mechanisms, including mono, and dinuclear systems both with homo- and
hetero-metallic centers. A representative example of these systems are Fe enzymes for oxygen and C-H bond
activation where the involvement of high-valent Fe are proposed, such as the heme containing Cyt P450
systems, non-heme enzymes ribonucleotide reductase (Mn/Fe and Fe/Fe), and methane mono oxygenase
(Fe/Fe). We will also focus on Ni and Ni/Fe enzymes relevant to H2 generation and methane metabolism, and
functional analogs of the important class of heme-copper oxidase systems engineered into simpler proteins.
项目总结/摘要
这个提议的目的是了解自然界中发生的控制良好的化学反应,
金属酶,通过开发必要的工具,并应用它们来遵循的结构动力学的
蛋白质和金属催化剂的化学动力学。为此,我们将使用X射线晶体学,
X射线自由电子激光器(XFEL)的X射线光谱技术。
尽管人们已经研究了酶的结构和催化位点的化学性质,
从本质上讲,对原子尺度化学的理解需要一种超越传统方法的新方法。
稳态X射线晶体学和低温下的X射线光谱学。跟随动态
在环境温度下金属酶的几何和电子结构的变化,而
克服X射线对氧化还原活性催化中心的严重损伤,是推导该反应的关键
机制来自XFEL的强烈和超短飞秒(fs)X射线脉冲提供了一个机会,
克服了目前在同步加速器X射线加速器上收集生物样品室温数据的局限性,
射线源。飞秒X射线脉冲与逐炮样品替换使得获取信号成为可能
在损坏发生和样本被破坏之前。
我们将设计和应用一套时间分辨X射线衍射和X射线吸收/发射
光谱学方法,利用XFEL光束的独特性质。这将提供一个
蛋白质和辅助因子之间的相关数据的前所未有的组合,所有这些都是
了解蛋白质的几何结构和电子结构之间的相互作用是必要的
金属络合物的性质和功能性后果。光谱学,包括发射和吸收
光谱,将提供电子结构的时间演变,而同时室温
X射线晶体学将帮助我们可视化整个蛋白质几何结构的变化。
我们将使用这些方法来研究生物学中一些最重要的金属酶,
深入了解催化机制,包括单核和双核系统,
异金属中心这些系统的代表性实例是用于氧和C-H键的Fe酶
提出涉及高价Fe的活化,例如含有Cyt P450的血红素
系统,非血红素酶核糖核苷酸还原酶(Mn/Fe和Fe/Fe)和甲烷单加氧酶
(Fe/Fe)。我们还将关注与H2生成和甲烷代谢相关的Ni和Ni/Fe酶,
血红素-铜氧化酶系统的重要类别的功能类似物被工程化为更简单的蛋白质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junko Yano其他文献
Junko Yano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junko Yano', 18)}}的其他基金
Biological Spectroscopy and Crystallography Using an X-ray Free Electron Laser
使用 X 射线自由电子激光进行生物光谱学和晶体学
- 批准号:
10246411 - 财政年份:2014
- 资助金额:
$ 54.13万 - 项目类别:
Biological Spectroscopy and Crystallography Using an X-ray Free Electron Laser
使用 X 射线自由电子激光进行生物光谱学和晶体学
- 批准号:
9132275 - 财政年份:2014
- 资助金额:
$ 54.13万 - 项目类别:
Biological Spectroscopy and Crystallography Using an X-ray Free Electron Laser - Supplemental Equipment
使用 X 射线自由电子激光进行生物光谱学和晶体学 - 补充设备
- 批准号:
9027669 - 财政年份:2014
- 资助金额:
$ 54.13万 - 项目类别:
Biological Spectroscopy and Crystallography Using an X-ray Free Electron Laser
使用 X 射线自由电子激光进行生物光谱学和晶体学
- 批准号:
9341359 - 财政年份:2014
- 资助金额:
$ 54.13万 - 项目类别:
Biological Spectroscopy and Crystallography Using an X-ray Free Electron Laser
使用 X 射线自由电子激光进行生物光谱学和晶体学
- 批准号:
8673988 - 财政年份:2014
- 资助金额:
$ 54.13万 - 项目类别:
Biological Spectroscopy and Crystallography Using an X-ray Free Electron Laser
使用 X 射线自由电子激光进行生物光谱学和晶体学
- 批准号:
9790969 - 财政年份:2014
- 资助金额:
$ 54.13万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 54.13万 - 项目类别:
Discovery Projects