Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis

人机协作提高急性呼吸困难诊断的准确性并减少偏差

基本信息

项目摘要

PROJECT SUMMARY Acute dyspnea (shortness of breath) is one of the most common reasons for emergency department visits and hospitalizations each year. Heart failure, pneumonia, and chronic obstructive pulmonary disease are the most common etiologies, representing 2.5 million hospitalizations in the US in 2017. Determining the precise cause of acute dyspnea is critically important but challenging, as presenting symptoms, laboratory testing, and imaging results may be difficult to interpret, particularly in the elderly and patients with comorbid disease or severe illness. Diagnostic errors and inappropriate treatment may occur in up to 30% of patients, which is associated with worse patient outcomes. Artificial Intelligence (AI) tools have been proposed to augment providers in the diagnostic process and are well-positioned to support the diagnostic evaluation of acute dyspnea. However, inaccurate AI tools can also worsen clinician performance. Therefore, simply keeping clinicians “in-the-loop” is not a guaranteed back-stop against a poorly performing model. This proposal seeks to enable effective Clinician-AI collaborations to improve diagnostic accuracy in acute dyspnea. We propose to: 1) evaluate computational strategies to improve the robustness of an AI tool used to support clinicians in the diagnosis of acute dyspnea, 2) test strategies to enhance collaborations between clinicians and AI tools, 3) prospectively evaluate an acute dyspnea AI tool in a clinical environment while evaluating strategies to collect clinician feedback to enable ongoing model improvement. Our multidisciplinary team consisting of experts in clinical medicine, computer vision, machine learning, and human-computer interaction are well positioned to tackle these important challenges. Successful completion of this proposal will result in a robust, generalizable acute dyspnea AI tool to augment physicians in the diagnostic evaluation of acute dyspnea. More broadly, the proposal will lead to generalizable knowledge to support safer development and integration of AI tools across healthcare settings.
项目总结 急性呼吸困难(呼吸急促)是急诊科就诊和 每年住院治疗的人数。心力衰竭、肺炎和慢性阻塞性肺病是最常见的 常见病因,2017年美国有250万人住院治疗。确定确切的原因 急性呼吸困难是极其重要但具有挑战性的,因为出现症状、实验室检测和 成像结果可能很难解释,特别是在老年人和合并疾病或 得了重病。高达30%的患者可能会出现诊断错误和不适当的治疗,这是 与较差的患者结局相关。人工智能(AI)工具已被提出以增强 提供者在诊断过程中处于有利地位,能够支持对急性胰腺炎的诊断评估 呼吸困难。然而,不准确的人工智能工具也会恶化临床医生的表现。因此,简单地保持 临床医生的“环路”并不是针对表现不佳的模式的保证后盾。这项提议旨在 使有效的临床医生-人工智能协作,以提高对急性呼吸困难的诊断准确性。我们建议: 1)评估计算策略,以提高用于支持临床医生的人工智能工具的稳健性 急性呼吸困难的诊断,2)加强临床医生和人工智能工具之间合作的测试策略,3) 在临床环境中前瞻性地评估急性呼吸困难人工智能工具,同时评估收集 临床医生反馈以支持持续的模型改进。我们的多学科团队由以下领域的专家组成 临床医学、计算机视觉、机器学习和人机交互 应对这些重要挑战。成功完成这项提案将产生一个健壮的、可推广的 急性呼吸困难人工智能工具,以增强医生在诊断评估急性呼吸困难。更广泛地说, 提案将产生可概括的知识,以支持更安全的开发和AI工具的集成 医疗保健设置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael William Sjoding其他文献

Michael William Sjoding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael William Sjoding', 18)}}的其他基金

Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10693285
  • 财政年份:
    2021
  • 资助金额:
    $ 70.53万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10491373
  • 财政年份:
    2021
  • 资助金额:
    $ 70.53万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10687507
  • 财政年份:
    2021
  • 资助金额:
    $ 70.53万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10015336
  • 财政年份:
    2019
  • 资助金额:
    $ 70.53万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    9927810
  • 财政年份:
    2019
  • 资助金额:
    $ 70.53万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10221055
  • 财政年份:
    2019
  • 资助金额:
    $ 70.53万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10458527
  • 财政年份:
    2019
  • 资助金额:
    $ 70.53万
  • 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
  • 批准号:
    9292908
  • 财政年份:
    2017
  • 资助金额:
    $ 70.53万
  • 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
  • 批准号:
    9908166
  • 财政年份:
    2017
  • 资助金额:
    $ 70.53万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 70.53万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 70.53万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了