SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea

SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法

基本信息

项目摘要

The ability to rapidly match the right patients to the right treatments at the right time is critical to ensuring patients receive high quality care. The vast majority of machine learning applications in healthcare focus on diagnosing or stratifying patients for a particular outcome. In contrast, reinforcement learning (RL) aims to learn how clinical states (i.e., sets of signs, symptoms, and test results) respond to specific sequences of treatments, with the goal of optimizing clinical outcomes. RL does not aim to diagnose, but infers diagnosis based on a patient's response to specific treatments--in many ways mimicking how clinicians operate in practice. This proposal will develop a novel clinician-in-the-loop reinforcement learning (RL) framework that analyzes electronic health record (EHR) clinical time-series data to support physician decision making, iteratively providing physicians the estimated outcome of potential treatment strategies. Our topic of focus for this work is the evaluation and treatment of patients hospitalized with acute dyspnea (shortness of breath) and signs of impending respiratory failure. Acute dyspnea is an ideal condition for an RL approach, since it can be due to three overlapping conditions: congestive heart failure, chronic obstructive pulmonary disease and pneumonia. Determining optimal treatment for these patients is clinically difficult, as a patient's presentation is frequently ambiguous, rapidly changing, and often due to multiple causes. Inappropriate treatment may occur in up to a third of patients leading to increased mortality. While developing this RL framework, we will also develop methods to learn more useful representations of high-dimensional clinical time-series data to improve the efficiency of RL model training. In addition, given the challenges of working with observational health data, we will develop new methods for evaluation of learned policies and develop new theory to better understand the limitations of RL using observational data. The project has four aims: 1) create a shareable, de-identified EHR time-series dataset of 35,000 patients with acute dyspnea, 2) develop techniques for exploiting invariances In tasks involving clinical time-series data to improve the efficiency of RL model training, 3) develop and evaluate an RL-based framework for learning optimal treatment policies for acute dyspnea, and 4) prospectively validate the learned treatment model. This research will result in new techniques for learning representations from time-series data and will study both the theoretical and practical limitations of RL using observational clinical data, leading to key advancements in ML and RL for clinical care. The tools developed for clinical decision support in this proposal have the potential for high impact because of their ability to generalize beyond the problem studied here to other conditions, laying the groundwork for clinical systems that directly impact society by aiding in the timely and appropriate treatment of patients.
在正确的时间将正确的患者与正确的治疗方法快速匹配的能力对于确保患者的安全至关重要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael William Sjoding其他文献

Michael William Sjoding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael William Sjoding', 18)}}的其他基金

Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10693285
  • 财政年份:
    2021
  • 资助金额:
    $ 23.22万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10491373
  • 财政年份:
    2021
  • 资助金额:
    $ 23.22万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10272748
  • 财政年份:
    2021
  • 资助金额:
    $ 23.22万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10687507
  • 财政年份:
    2021
  • 资助金额:
    $ 23.22万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10015336
  • 财政年份:
    2019
  • 资助金额:
    $ 23.22万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    9927810
  • 财政年份:
    2019
  • 资助金额:
    $ 23.22万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10458527
  • 财政年份:
    2019
  • 资助金额:
    $ 23.22万
  • 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
  • 批准号:
    9292908
  • 财政年份:
    2017
  • 资助金额:
    $ 23.22万
  • 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
  • 批准号:
    9908166
  • 财政年份:
    2017
  • 资助金额:
    $ 23.22万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了