SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea

SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法

基本信息

项目摘要

The ability to rapidly match the right patients to the right treatments at the right time is critical to ensuring patients receive high quality care. The vast majority of machine learning applications in healthcare focus on diagnosing or stratifying patients for a particular outcome. In contrast, reinforcement learning (RL) aims to learn how clinical states (i.e., sets of signs, symptoms, and test results) respond to specific sequences of treatments, with the goal of optimizing clinical outcomes. RL does not aim to diagnose, but infers diagnosis based on a patient's response to specific treatments--in many ways mimicking how clinicians operate in practice. This proposal will develop a novel clinician-in-the-loop reinforcement learning (RL) framework that analyzes electronic health record (EHR) clinical time-series data to support physician decision making, iteratively providing physicians the estimated outcome of potential treatment strategies. Our topic of focus for this work is the evaluation and treatment of patients hospitalized with acute dyspnea (shortness of breath) and signs of impending respiratory failure. Acute dyspnea is an ideal condition for an RL approach, since it can be due to three overlapping conditions: congestive heart failure, chronic obstructive pulmonary disease and pneumonia. Determining optimal treatment for these patients is clinically difficult, as a patient's presentation is frequently ambiguous, rapidly changing, and often due to multiple causes. Inappropriate treatment may occur in up to a third of patients leading to increased mortality. While developing this RL framework, we will also develop methods to learn more useful representations of high-dimensional clinical time-series data to improve the efficiency of RL model training. In addition, given the challenges of working with observational health data, we will develop new methods for evaluation of learned policies and develop new theory to better understand the limitations of RL using observational data. The project has four aims: 1) create a shareable, de-identified EHR time-series dataset of 35,000 patients with acute dyspnea, 2) develop techniques for exploiting invariances In tasks involving clinical time-series data to improve the efficiency of RL model training, 3) develop and evaluate an RL-based framework for learning optimal treatment policies for acute dyspnea, and 4) prospectively validate the learned treatment model. This research will result in new techniques for learning representations from time-series data and will study both the theoretical and practical limitations of RL using observational clinical data, leading to key advancements in ML and RL for clinical care. The tools developed for clinical decision support in this proposal have the potential for high impact because of their ability to generalize beyond the problem studied here to other conditions, laying the groundwork for clinical systems that directly impact society by aiding in the timely and appropriate treatment of patients.
在正确的时间将正确的患者与正确的治疗方法快速匹配的能力对于确保患者 得到高质量的护理。医疗保健领域的绝大多数机器学习应用都专注于诊断或 对患者进行特定结果的分层。相比之下,强化学习(RL)旨在学习临床状态如何 (i.e.,体征、症状和检测结果)对特定治疗序列有反应,目的是 优化临床结果。RL的目的不是诊断,而是根据患者对以下问题的反应推断诊断: 具体的治疗--在许多方面模仿临床医生在实践中的操作。这一提议将发展出一部小说 临床医生在环强化学习(RL)框架,分析电子健康记录(EHR)临床 时间序列数据,以支持医生的决策,迭代地为医生提供估计的结果, 潜在的治疗策略。我们这项工作的重点是对住院患者的评估和治疗 伴有急性呼吸困难(呼吸短促)和呼吸衰竭即将发生的体征。急性呼吸困难是理想的 RL方法的条件,因为它可能是由于三个重叠的条件:充血性心力衰竭,慢性 阻塞性肺病和肺炎。确定这些患者的最佳治疗在临床上是困难的, 因为患者的表现经常是模糊的,快速变化的,并且通常是由于多种原因。 多达三分之一的患者可能发生不适当的治疗,导致死亡率增加。在开发这个 RL框架,我们还将开发方法来学习更有用的表示高维临床 时间序列数据,以提高RL模型训练的效率。此外,鉴于与联合国合作的挑战, 观察健康数据,我们将开发新的方法来评估学习的政策,并开发新的理论, 使用观测数据更好地理解RL的局限性。该项目有四个目标:1)创建一个可共享的, 35,000例急性呼吸困难患者的去识别EHR时间序列数据集,2)开发技术, 在涉及临床时间序列数据的任务中,为了提高RL模型训练的效率,3)开发和 评估基于RL的框架,以学习急性呼吸困难的最佳治疗策略,以及4)前瞻性 验证学习的治疗模型。这项研究将导致新的技术,学习表征从 时间序列数据,并将使用观察性临床数据研究RL的理论和实践局限性, 导致临床护理ML和RL的关键进步。为临床决策支持开发的工具, 这些建议有可能产生很大的影响,因为它们有能力超越这里研究的问题, 其他条件,为通过及时和及时地提供援助直接影响社会的临床系统奠定基础, 对患者进行适当治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael William Sjoding其他文献

Michael William Sjoding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael William Sjoding', 18)}}的其他基金

Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10693285
  • 财政年份:
    2021
  • 资助金额:
    $ 23.85万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10491373
  • 财政年份:
    2021
  • 资助金额:
    $ 23.85万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10272748
  • 财政年份:
    2021
  • 资助金额:
    $ 23.85万
  • 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
  • 批准号:
    10687507
  • 财政年份:
    2021
  • 资助金额:
    $ 23.85万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10015336
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10221055
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
  • 批准号:
    10458527
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
  • 批准号:
    9292908
  • 财政年份:
    2017
  • 资助金额:
    $ 23.85万
  • 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
  • 批准号:
    9908166
  • 财政年份:
    2017
  • 资助金额:
    $ 23.85万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了