Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
基本信息
- 批准号:10271568
- 负责人:
- 金额:$ 37.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinAddressAdherens JunctionAdhesionsBasement membraneBlood CirculationBlood VesselsBreast Cancer CellCD44 geneCathepsinsCell Cycle ArrestCell DeathCell NucleusCell SurvivalCell-Cell AdhesionCellsCellular StressChromatinChromatin StructureClinicalCoagulation ProcessComputer ModelsCytometryCytoplasmDataDistantDistant MetastasisDown-RegulationEndotheliumEngineeringEnvironmentExtravasationGrowthIndividualIntercellular JunctionsInterventionKineticsLamin Type ALiquid substanceLiverMatrix MetalloproteinasesMechanical StressMechanicsMediatingMelanoma CellMetastatic Neoplasm to the LiverMetastatic Skin CancerMicroanatomyModelingMolecularMolecular ConformationMolecular TargetMonitorMovementMusNeoplasm Circulating CellsNeoplasm MetastasisNuclearOrganOutcomePathway interactionsPeptide HydrolasesProbabilityProcessRegulationSchemeSecureSiteSkinSolidStressSurvival RateSystemTestingTissue imagingTissuesVariantVascular remodelingbasecancer cellcell motilitycopingearly onsetexperiencefitnessin silicoin vivoin vivo Modelintravital microscopylive cell microscopymechanical propertiesmouse modelmultiphoton microscopyneoplastic cellnovelpreventprogramsresponseshear stresssuccesstissue stresstranscriptomicstriple-negative invasive breast carcinomavascular bed
项目摘要
Project 2: SUMMARY
Organ colonization and survival of circulating tumor cells (CTCs) depends on a response program in tumor
cells (TCs), termed mechano-adaptation, to cope with mechanical and molecular stresses on the cytoplasm
and nucleus experienced during intravascular arrest and extravasation. The strength and duration of
mechanical stress differs in vascular beds among organs, such as liver and skin, and further differs between
individual-cell and collective organ colonization. Molecular systems implicated in the mechano-adaptation of
CTCs include coordinated cell-cell adhesions, cytoskeletal contractility, protease systems and deformation
or the nucleus, which cooperate to secure multistep movement into the secondary site and TC survival. We
hypothesize that successful metastasis in vivo depends on an adaptive interplay between the mechanical
and molecular intra- and perivascular stresses present at distant site and the coping ability of CTCs to
overcome these stresses. By coordinated cell-cell adhesion, cytoskeletal contractility, deformation of the
nucleus, and protease systems we predict that mechano-adaptation secures individual-cell and collective TC
survival and further mediates lasting reprogramming towards growth or dormancy. Consequently, we
anticipate that interfering with cell mechanical adaptation strategies will increase cell stress, support CTC
death and diminish metastatic organ colonization. By combining intravital microscopy in mouse models,
computational modeling (Core A) and transcriptomic and chromatin structure analyses (Core B), we will
address the rate-limiting steps of single-cell and collective organ colonization of triple-negative breast cancer
and melanoma cells to skin and liver. In Aim 1 we will examine the mechanisms of collective and single-cell
organ colonization and metastatic outcomes, by interfering with adherens junctions (p120-catenin) and
intravascular coagulation. In Aim 2, we will identify the rate-limiting steps of cytoskeletal and nuclear
mechanics and the ability to remodel the vascular wall during single-cell and collective organ colonization.
Targeted interference with CD44-mediated adhesion to perivascular substrate, actomyosin contractility,
nuclear deformability by lamin A/C expression variation and the ability to reorganize the basement membrane
will be performed. In Aim 3, we will identify the molecular responses underlying stress-induced mechano-
adaptation and associated effects on nuclear chromatin conformation, using transcriptomic and ultrastructural
analyses combined with computational modeling. Identified key pathways implicated in mediating mechano-
adaptation and TC survival, cell cycle arrest (dormancy) and outgrowth will be inhibited by combined
molecular interference to limit TC survival and both single-cell and collective metastasis. This project will
deliver an integrated view on cell migration, molecular reprogramming, fate decisions, and reveal potential
intervention points to enhance tumor cell elimination in transit.
项目2:总结
循环肿瘤细胞(CTCs)的器官定植和存活依赖于肿瘤中的反应程序
细胞(TC),称为机械适应,以应对细胞质上的机械和分子压力。
胞核在血管内停滞和外渗过程中出现。的强度和持续时间
不同器官(如肝脏和皮肤)的血管床上的机械应力是不同的,而且
个体细胞和集体器官的定植。与机械适应有关的分子系统
CTC包括协调的细胞-细胞黏附、细胞骨架的收缩、蛋白水解酶系统和变形
或核,它们相互协作以确保进入次级部位的多步运动和TC的存活。我们
假设在体内的成功转移依赖于机械之间的适应性相互作用
和分子血管内和血管周围的应力存在于远端,CTC的应对能力
克服这些压力。通过协调细胞间的黏附、细胞骨架的收缩、变形
细胞核和蛋白水解酶系统我们预测,机械适应保护个体细胞和集体TC
存活并进一步调节朝向生长或休眠的持久重新编程。因此,我们
预计干扰细胞机械适应策略将增加细胞压力,支持CTC
死亡和减少转移性器官定植。通过在小鼠模型中结合活体显微镜,
计算建模(核心A)和转录和染色质结构分析(核心B),我们将
解决三阴性乳腺癌单细胞和集体器官定植的限速步骤
皮肤和肝脏的黑色素瘤细胞。在目标1中,我们将研究集体和单细胞的机制
通过干扰黏附连接(p120-catenin)和
血管内凝血。在目标2中,我们将确定细胞骨架和核的限速步骤
在单细胞和集体器官定植期间重建血管壁的力学和能力。
靶向干扰CD44介导的与血管周围基质的黏附,肌球蛋白收缩能力,
核变形性受层蛋白A/C表达变化和基底膜重组能力的影响
将会被执行。在目标3中,我们将确定应激诱导的力学基础上的分子反应。
利用转录和超微结构研究核染色质构象的适应性及其相关效应
分析与计算建模相结合。确定了与中介机制有关的关键途径-
联合应用将抑制适应和TC存活、细胞周期停滞(休眠)和生长
分子干扰以限制TC存活以及单细胞和集体转移。这个项目将
提供关于细胞迁移、分子重新编程、命运决定的综合观点,并揭示潜力
干预点是为了增强转移过程中肿瘤细胞的清除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Friedl其他文献
Peter Friedl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Friedl', 18)}}的其他基金
Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
- 批准号:
10688251 - 财政年份:2021
- 资助金额:
$ 37.65万 - 项目类别:
Project 2: Mechanochemical Mechanisms and Vulnerabilities of Individual and Collective Organ-Preferential Metastasis In Vivo
项目2:体内个体和集体器官优先转移的机械化学机制和脆弱性
- 批准号:
10490290 - 财政年份:2021
- 资助金额:
$ 37.65万 - 项目类别:
2013 Directed Cell Migration Gordon Research Conference & Gordon Research Seminar
2013年定向细胞迁移戈登研究会议
- 批准号:
8459154 - 财政年份:2012
- 资助金额:
$ 37.65万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Research Grant