Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
基本信息
- 批准号:10272387
- 负责人:
- 金额:$ 158.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBiological ModelsBreastBreast Cancer ModelBreast Cancer PatientBreast cancer metastasisCRISPR screenCRISPR/Cas technologyCancer RelapseCell CommunicationCellsClassificationClinicalCollectionComputer ModelsDataDependenceDevelopmentDiagnosisDiseaseERBB2 geneEstrogen receptor positiveExperimental ModelsGenomic approachGenomicsGoalsImageImmuneImmune systemIn SituLeadLongitudinal cohortMachine LearningMalignant NeoplasmsMetastatic breast cancerModelingMolecularMolecular ProfilingMultiplexed Ion Beam ImagingNatureNeoplasm MetastasisNon-linear ModelsNonlinear DynamicsOncogenicOrganoidsOutcomePathologistPathologyPatientsPhagocytosisPopulationPrimary NeoplasmProcessPropertyResearch Project GrantsResearch SupportResistanceResolutionResource SharingSamplingSiteSpatial DistributionSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStromal CellsSubgroupSystemSystems BiologyTechnologyTherapeuticTimeTissue ModelTissue SampleTissuesTumor TissueVisionbeanbiobankbreast cancer progressioncancer cellcohortcomputer frameworkcomputerized toolsdisease heterogeneityfunctional genomicsgenome-widehigh riskhormone therapyinnovationmacrophagemalignant breast neoplasmmultidisciplinaryneoplastic cellprospectiverelapse riskresponsesingle cell technologytargeted treatmenttherapeutic targettherapy resistanttissue archivetissue resourcetriple-negative invasive breast carcinomatumor
项目摘要
Abstract/Project Summary
Metastatic breast cancer and relapse following therapy are dependent on (1) development of intrinsic resistance
to targeted and endocrine therapies, and (2) resistance to recognition and destruction of cancer cells by the
immune system. The Stanford Breast Metastasis Center (SBMC) is focused on (1) quantifying the timing of
metastatic dissemination in breast cancer (2) functionally delineating the contribution of cellular and
microenvironmental crosstalk on metastatic proclivity, and (3) characterizing the mechanisms of responses by
metastatic cells to therapies.
In order to achieve these goals, mechanistic computational models that capture dynamic and
emergent tumor cell intrinsic and extrinsic properties are needed as are clinically annotated longitudinal
tissue cohorts and experimental models that capture disease heterogeneity. The SBMC addresses each of these
outstanding challenges. First, we have established an unparalleled collection of clinically annotated breast
cancer cohorts sampled through treatment and metastasis, including both prospective and retrospective
longitudinal cohorts, with multiple metastatic sites. We leverage a living biobank of breast cancer patient-
derived organoids (PDOs) from primary tumors and metastases that recapitulate the heterogeneity of
disease, high-risk of relapse subgroups and tumor-immune interactions and greatly facilitating the proposed
functional studies. We characterize these vast tissue resources and model systems using state-of-the-art
molecular profiling technologies to probe tumor tissue in situ at single cell and subcellular resolution. Specifically,
with Multiplexed Ion Beam Imaging by Time of Flight (MIBI-TOF) and matrix-assisted laser desorption ionization
imaging (MALDI) we simultaneously visualize the composition, lineage, function and spatial distribution of tumor
and stromal cell populations and perform co-registered analysis of the glycome. We integrate these data within
the genomic landscape of metastatic disease and analyze these data within robust machine learning and
computational frameworks to uncover disease dynamics and features associated with clinical outcomes.
Lastly, we conduct genome-scale CRISPR screens in 3D breast cancer models to systematically define
oncogenic dependencies, therapeutic vulnerabilities and macrophage-tumor cell interactions.
This integrated systems biology and functional genomics approach will contribute to a quantitative and
mechanistic understanding of metastatic breast cancer and the dynamic relationship between tumor cells and
the host, with implications for therapeutic targeting.
摘要/项目摘要
转移性乳腺癌和治疗后复发取决于(1)内在抵抗力的发展
靶向和内分泌治疗,以及(2)对识别和摧毁癌细胞的抵抗力
免疫系统。斯坦福大学乳房转移中心(SBMC)专注于(1)量化
乳腺癌中的转移扩散(2)从功能上描述细胞和
微环境串扰对转移倾向的影响,以及(3)通过以下方式表征反应机制
转移性细胞的治疗。
为了实现这些目标,捕捉动态和动态的机械性计算模型
新出现的肿瘤细胞的内在和外在属性是需要的,就像临床上注明的纵向
捕捉疾病异质性的组织队列和实验模型。SBMC解决了所有这些问题
突出的挑战。首先,我们建立了一个无与伦比的临床注释乳房集合。
通过治疗和转移抽样的癌症队列,包括前瞻性和回顾性研究
纵向队列,有多个转移部位。我们利用乳腺癌患者的活生物库-
来自原发肿瘤和转移瘤的衍生有机物(PDO)概括了
疾病、复发高危亚群和肿瘤-免疫相互作用,极大地促进了拟议的
功能研究。我们使用最先进的技术来描述这些庞大的组织资源和模型系统
单细胞和亚细胞分辨率的原位探测肿瘤组织的分子图谱技术。具体来说,
多路离子束飞行时间成像(MIBI-TOF)和基质辅助激光解吸电离
成像(MALDI)我们同时可视化肿瘤的组成、谱系、功能和空间分布
和基质细胞群,并对糖糖进行共同注册分析。我们将这些数据集成到
转移性疾病的基因组图谱,并在稳健的机器学习和
揭示疾病动力学和与临床结果相关的特征的计算框架。
最后,我们在3D乳腺癌模型中进行基因组规模的CRISPR筛查,以系统地定义
致癌依赖性、治疗脆弱性和巨噬细胞-肿瘤细胞相互作用。
这种集成的系统生物学和功能基因组学方法将有助于
转移性乳腺癌的机制认识及肿瘤细胞与肿瘤细胞的动态关系
宿主,与治疗靶向的含义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina N Curtis其他文献
Christina N Curtis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christina N Curtis', 18)}}的其他基金
Project 1:Evolutionary dynamics and drivers of breast cancer metastasis and relapse
项目1:乳腺癌转移和复发的进化动力学和驱动因素
- 批准号:
10272389 - 财政年份:2021
- 资助金额:
$ 158.01万 - 项目类别:
Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
- 批准号:
10704647 - 财政年份:2021
- 资助金额:
$ 158.01万 - 项目类别:
Stanford Breast Metastasis Center Administrative Core
斯坦福乳腺转移中心行政核心
- 批准号:
10272388 - 财政年份:2021
- 资助金额:
$ 158.01万 - 项目类别:
Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
- 批准号:
10819066 - 财政年份:2021
- 资助金额:
$ 158.01万 - 项目类别:
Stanford Breast Metastasis Center Administrative Core
斯坦福乳腺转移中心行政核心
- 批准号:
10704683 - 财政年份:2021
- 资助金额:
$ 158.01万 - 项目类别:
Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
- 批准号:
10660804 - 财政年份:2021
- 资助金额:
$ 158.01万 - 项目类别:
Project 1:Evolutionary dynamics and drivers of breast cancer metastasis and relapse
项目1:乳腺癌转移和复发的进化动力学和驱动因素
- 批准号:
10704684 - 财政年份:2021
- 资助金额:
$ 158.01万 - 项目类别:
Forecasting tumor evolution: can the past reveal the future?
预测肿瘤进化:过去能否揭示未来?
- 批准号:
10455013 - 财政年份:2018
- 资助金额:
$ 158.01万 - 项目类别:
Forecasting tumor evolution: can the past reveal the future?
预测肿瘤进化:过去能否揭示未来?
- 批准号:
10224138 - 财政年份:2018
- 资助金额:
$ 158.01万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 158.01万 - 项目类别:
Research Grant