Advancing programmable RNA-targeting tools for research and therapeutics
推进用于研究和治疗的可编程 RNA 靶向工具
基本信息
- 批准号:10273820
- 负责人:
- 金额:$ 78.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-17 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdoptedBindingBiochemicalBioinformaticsBiological SciencesBiologyBrainCell LineCellsClinicClinicalClustered Regularly Interspaced Short Palindromic RepeatsDNADeaminaseDevelopmentDiseaseDisease modelEngineeringEnzymesEvolutionFutureGenetic DiseasesGenetic TranscriptionGoalsHuman BiologyImageKineticsLightMammalian CellMiningModificationMolecularMolecular BiologyMolecular ConformationMusMutationNeurodevelopmental DisorderNoiseOrthologous GenePopulationProtein EngineeringProteinsRNARNA EditingRNA SequencesRNA StabilityRNA-Binding ProteinsRecoveryResearchResearch PersonnelRett SyndromeRoleRouteSignal TransductionSpecificityStructureSystemTechnologyTestingTherapeuticTherapeutic UsesTissuesTranscriptVariantViral VectorWorkbasecell typecomputational pipelinesexperiencefunctional outcomesgene therapygenome editinghuman diseaseimaging platformimprovedin vivoknock-downliver injurymicrobialmouse modelneurodevelopmentnovelnovel strategiespreferenceprogramsreconstitutionsensortechnology developmenttherapeutic genome editingtooltranscriptome
项目摘要
PROJECT SUMMARY
We previously developed a suite of tools for modulating and studying RNA based on the RNA-targeting CRISPR-
Cas13 system, which has been adopted or extended by many researchers in the life sciences. This proposal
seeks to discover and characterize additional programmable RNA binding proteins and develop them
for use as molecular technologies. In particular, we are focusing on identifying ultra-small Cas13 proteins,
which can be fused to RNA editing effectors to create compact platforms for precision, single-base transcript
editing. RNA editing has significant therapeutic potential across a spectrum of conditions, including genetic
diseases where it is not possible or too risky to edit the genome as well as acute insults where transient genetic
changes are desirable. Thus, another aim is to demonstrate the feasibility of using RNA editing therapeutically.
Beyond RNA editors, we will also use the new proteins we identify to develop transcriptional state sensors, which
can be used to mark specific cell sub-types within a heterogenous population, either for imaging, isolation, or
functional outcomes.
To achieve these goals, we will leverage our previous experience to discover and characterize new RNA
targeting CRISPR systems, with a focus on identifying small enzymes that support RNA editing activity. We will
also explore the possibility of using novel RNA deaminase enzymes in our RNA editing constructs. In addition to
creating RNA editing constructs, we will also fuse the RNA targeting enzymes to GFP or Cre to create
transcriptional sensors. A critical aspect of our work will be protein engineering. Candidate enzymes (or their
RNA components) may need to be modified for efficient, specific activity in mammalian cells. We will use protein
engineering to increase the specificity and activity of RNA deaminases, as well as extend the substrate base
preference of these enzymes. For our transcriptional state sensors, protein engineering will be central to
successfully generating sensors that afford high specificity and high signal-to-noise ratios. All of these efforts will
be guided by structural and biochemical studies of the relevant enzymes.
Finally, we will apply the compact, high-specificity RNA editors in a mouse model of acute liver damage to
demonstrate their therapeutic potential as short-lived, reversible treatments. In parallel, we will demonstrate the
feasibility of using RNA editing to correct a mutation that causes the neurodevelopmental disorder Rett syndrome
using a previously established mouse model of this disease.
This work will substantially advance RNA editing toward clinical use, as well as uncover new biology about
CRISPR systems and other microbial defense systems.
项目摘要
我们之前开发了一套工具,用于根据RNA靶向CRISPR-调节和研究RNA
CAS13系统已被生命科学中的许多研究人员采用或扩展。这个建议
试图发现和表征其他可编程RNA结合蛋白并开发它们
用作分子技术。特别是,我们专注于识别超小的CAS13蛋白,
可以将其融合到RNA编辑效应子中,以创建紧凑的平台,以进行精确的单基数成绩单
编辑。 RNA编辑在各种条件下具有明显的治疗潜力,包括遗传
疾病不可能或太冒险编辑基因组以及急性侮辱是短暂的遗传
更改是可取的。因此,另一个目的是证明使用RNA进行治疗的可行性。
除了RNA编辑器之外,我们还将使用我们识别的新蛋白质来开发转录状态传感器,这些传感器
可用于在异源种群中标记特定的细胞亚型,以成像,分离或
功能结果。
为了实现这些目标,我们将利用我们以前的经验来发现和表征新的RNA
针对CRISPR系统,重点是识别支持RNA编辑活性的小型酶。我们将
还可以探索在我们的RNA编辑构建体中使用新型RNA脱氨酶的可能性。此外
创建RNA编辑结构,我们还将融合RNA靶向酶与GFP或CRE创建
转录传感器。我们工作的一个关键方面将是蛋白质工程。候选酶(或他们的
RNA成分)可能需要修改以在哺乳动物细胞中有效,特异性活性。我们将使用蛋白质
工程以提高RNA脱氨酶的特异性和活性,并扩展底物基础
这些酶的偏爱。对于我们的转录状态传感器,蛋白质工程将是
成功地生成具有高特异性和高信噪比的传感器。所有这些努力将
以相关酶的结构和生化研究为指导。
最后,我们将在急性肝损伤的小鼠模型中应用紧凑的高特异性RNA编辑器
证明其治疗潜力是短暂的,可逆的治疗方法。同时,我们将展示
使用RNA编辑来纠正引起神经发育障碍RETT综合征的突变的可行性
使用先前建立的该疾病的小鼠模型。
这项工作将大大推动RNA编辑临床使用,并发现有关的新生物学
CRISPR系统和其他微生物防御系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Zhang其他文献
Feng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Zhang', 18)}}的其他基金
Advancing programmable RNA-targeting tools for research and therapeutics
推进用于研究和治疗的可编程 RNA 靶向工具
- 批准号:
10475182 - 财政年份:2017
- 资助金额:
$ 78.4万 - 项目类别:
Exploration of Diverse Mobile Genetic Elements for Precision Genome Manipulation
探索用于精确基因组操作的多种移动遗传元件
- 批准号:
10251156 - 财政年份:2017
- 资助金额:
$ 78.4万 - 项目类别:
Exploration of Diverse Mobile Genetic Elements for Precision Genome Manipulation
探索用于精确基因组操作的多种移动遗传元件
- 批准号:
9345109 - 财政年份:2017
- 资助金额:
$ 78.4万 - 项目类别:
Advancing programmable RNA-targeting tools for research and therapeutics
推进用于研究和治疗的可编程 RNA 靶向工具
- 批准号:
10661786 - 财政年份:2017
- 资助金额:
$ 78.4万 - 项目类别:
DNA microscopy for spatially resolved genomic analyses in intact tissue
DNA 显微镜用于完整组织的空间分辨基因组分析
- 批准号:
9756434 - 财政年份:2016
- 资助金额:
$ 78.4万 - 项目类别:
LOCATER: Large-scale Observation of Cellular Activity Through Exosomal Reporters
LOCATER:通过外泌体记者大规模观察细胞活动
- 批准号:
9150623 - 财政年份:2015
- 资助金额:
$ 78.4万 - 项目类别:
Massively-parallel functional interrogation of psychiatric genetics
精神遗传学的大规模并行功能询问
- 批准号:
9310141 - 财政年份:2015
- 资助金额:
$ 78.4万 - 项目类别:
A novel mechanism of neurovascular protection in ischemic tolerance
缺血耐受中神经血管保护的新机制
- 批准号:
8940874 - 财政年份:2015
- 资助金额:
$ 78.4万 - 项目类别:
A novel mechanism of neurovascular protection in ischemic tolerance
缺血耐受中神经血管保护的新机制
- 批准号:
9234076 - 财政年份:2015
- 资助金额:
$ 78.4万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting glycoprotein (G) domain-III for pan-lyssavirus nanobody therapeutics
靶向糖蛋白 (G) 结构域 III 用于泛狂犬病病毒纳米抗体治疗
- 批准号:
10667756 - 财政年份:2023
- 资助金额:
$ 78.4万 - 项目类别:
Optimizing the Generation of Monoclonal Antibodies for Prevention and Treatment of HSV Disease
优化用于预防和治疗 HSV 疾病的单克隆抗体的生成
- 批准号:
10717320 - 财政年份:2023
- 资助金额:
$ 78.4万 - 项目类别:
Roles of N-glycans on neutrophil beta2 integrins in progression of acute lung injury
N-聚糖对中性粒细胞β2整合素在急性肺损伤进展中的作用
- 批准号:
10837431 - 财政年份:2023
- 资助金额:
$ 78.4万 - 项目类别:
Targeting mechanisms activating ion-channel for preventing acute lung injury
激活离子通道的靶向机制预防急性肺损伤
- 批准号:
10659781 - 财政年份:2023
- 资助金额:
$ 78.4万 - 项目类别:
Self-regulation of Lipases by Changes to Quaternary Structure
通过四级结构的变化进行脂肪酶的自我调节
- 批准号:
10429286 - 财政年份:2022
- 资助金额:
$ 78.4万 - 项目类别: