In silico safety pharmacology
计算机安全药理学
基本信息
- 批准号:10576790
- 负责人:
- 金额:$ 72.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-05 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdrenergic ReceptorAgreementAnti-Arrhythmia AgentsArrhythmiaAwardBackBehaviorBindingCardiacCardiotoxicityCategoriesCellsChemical StructureChemicalsChemistryClinical DataComplexComputer ModelsDangerousnessDataDevelopmentDisciplineDiseaseDisparateDissectionDrug CombinationsDrug DesignDrug InteractionsDrug KineticsDrug ScreeningDrug toxicityElectrocardiogramExperimental ModelsExposure toGoalsHeartHumanInvestigationIon ChannelKineticsMachine LearningMapsMedicineMethodologyModelingMolecularMolecular ConformationMovementPharmaceutical PreparationsPharmacologyPharmacotherapyPhysiciansPhysiologicalPoisonPotassium ChannelProcessPropertyResearch PersonnelRiskSafetyScreening procedureSignal TransductionStructureStructure-Activity RelationshipSystemTherapeuticTimeTissuesValidationWorkWritingbeta-adrenergic receptorcomputational pipelinesdeep learningdesigndrug classificationdrug developmentdrug discoverydrug mechanismdrug structureheart rhythmimprovedin silicoinnovationinsightlearning strategymulti-scale modelingnovelnovel strategiespredictive modelingprotein functionscale upscreeningside effectsimulationvirtualvoltage
项目摘要
PROJECT SUMMARY: A major factor plaguing drug development is that there is no drug-screening tool that
can distinguish between drugs that will induce cardiac arrhythmias from chemically similar safe drugs. The
current approaches rely on substitute markers such as action potential duration or QT interval prolongation on
the ECG. There is an urgent need to identify a new approach that can predict actual proarrhythmia from the drug
chemistry rather than relying on surrogate indicators. We have brought together an expert team to innovate at
the interfaces of experimental and computational modeling disciplines and develop an in silico simulation pipeline
to predict cardiotoxicity over multiple temporal and spatial scales from the atom to the cardiac rhythm.
An essential and unique aspect of our approach is that we propose to utilize atomistic scale simulation to predict
the transition rates of ion channels and adrenergic receptors and how they are modified by drug interaction. We
hypothesize that it is the subtleties of these interactions that are likely to be the critical determinants of drug
associated safety or proarrhythmia. In the last award period, we successfully developed an unprecedented
linkage: We connected the highly disparate space and time scales of ion channel structure and function. We
utilized atomistic simulation to compute drug kinetic rates were directly used as parameters in a hERG function
model. The model components were then integrated into predictive models at the cell and tissue scales to expose
fundamental arrhythmia vulnerability mechanisms and complex interactions underlying emergent behaviors.
Human clinical data were used for model validation and showed excellent agreement, demonstrating feasibility
of this new approach for cardiotoxicity prediction. In this renewal application we propose to hugely extend this
approach to include prediction of the interaction of cardiac channel gating and drug interaction as well as the
inclusion of adrenergic receptor interactions with drugs. Another essential aspect of safety pharmacology is the
development of new approaches to allow more efficient drug design, screening and prediction of cardiotoxicity.
Therefore, we will seek to develop, extend and apply a variety of machine learning and deep learning approaches
to improve drug discovery by predicting proarrhythmia from the drug chemistry with an efficient process that
identify drug congeners via machine learning to maximize therapy and minimize side effects. Finally, we propose
to classify drugs into categories based on proarrhythmia risk in normal and diseased virtual tissue settings. The
multiscale model for prediction of cardiopharmacology that we will develop in this application will be applied to
projects demonstrating its usefulness for efficacy or toxicity of drug treatments in the complex physiological
system of the heart.
项目总结:困扰药物开发的一个主要因素是没有药物筛选工具
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
COLLEEN E CLANCY其他文献
COLLEEN E CLANCY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('COLLEEN E CLANCY', 18)}}的其他基金
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10406687 - 财政年份:2021
- 资助金额:
$ 72.64万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10394236 - 财政年份:2020
- 资助金额:
$ 72.64万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10614418 - 财政年份:2020
- 资助金额:
$ 72.64万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10397892 - 财政年份:2018
- 资助金额:
$ 72.64万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10001997 - 财政年份:2018
- 资助金额:
$ 72.64万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10092300 - 财政年份:2018
- 资助金额:
$ 72.64万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10215080 - 财政年份:2018
- 资助金额:
$ 72.64万 - 项目类别:
相似海外基金
Structural basis for regulation of beta2 adrenergic receptor signaling by the dynamic post-translational modification S-palmitoylation
动态翻译后修饰S-棕榈酰化调节β2肾上腺素受体信号传导的结构基础
- 批准号:
10603466 - 财政年份:2023
- 资助金额:
$ 72.64万 - 项目类别:
Modulation of T lymphocyte Activation by Ã2-Adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
RGPIN-2019-06980 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
Discovery Grants Program - Individual
Glucocorticoid and Adrenergic Receptor Signaling at the Neuroimmune Interface
神经免疫界面的糖皮质激素和肾上腺素能受体信号传导
- 批准号:
RGPIN-2019-04706 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
Discovery Grants Program - Individual
Modulation of T lymphocyte Activation by ß2-adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
574979-2022 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
University Undergraduate Student Research Awards
Angiotensin-(1-7) and beta adrenergic receptor signaling in aging
衰老过程中血管紧张素 (1-7) 和 β 肾上腺素受体信号传导
- 批准号:
10629280 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
Angiotensin-(1-7) and beta adrenergic receptor signaling in aging
衰老过程中血管紧张素 (1-7) 和 β 肾上腺素受体信号传导
- 批准号:
10448574 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
Novel regulation of beta-adrenergic receptor function by phosphoinositide 3-kinase
磷酸肌醇 3-激酶对 β-肾上腺素能受体功能的新调节
- 批准号:
10591688 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
Modulation of T lymphocyte Activation by Ã2-adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
574984-2022 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
University Undergraduate Student Research Awards
Modulation of T lymphocyte Activation by ß2-adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
574985-2022 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
University Undergraduate Student Research Awards
The molecular mechanism of the crosstalk between the beta-2 adrenergic receptor and chemokine receptors in lymphocytes
淋巴细胞β2肾上腺素受体与趋化因子受体串扰的分子机制
- 批准号:
22K07118 - 财政年份:2022
- 资助金额:
$ 72.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)