In silico Safety Pharmacology
计算机安全药理学
基本信息
- 批准号:9176961
- 负责人:
- 金额:$ 73.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-05 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAction PotentialsAdverse effectsAffinityAmiodaroneAnti-Arrhythmia AgentsArrhythmiaBehaviorBiologicalCardiacCardiotoxicityCategoriesCellsClinical ResearchComplexComputer SimulationDataDependenceDevelopmentDrug IndustryDrug InteractionsDrug TargetingElectrocardiogramEstrogensExhibitsExperimental ModelsFemaleGoalsGonadal Steroid HormonesGovernmentHeartHumanIndustryIon ChannelKineticsLeadLettersLinkLong QT SyndromeMammalian CellMethodologyModelingMolecular ConformationMoxifloxacinNamesPharmaceutical PreparationsPharmacologyPharmacotherapyPhasePhysiologicalPlaguePotassium ChannelPreclinical Drug EvaluationProcessPropertyPublishingRehabilitation therapyRiskRisk FactorsRoleSafetySotalolSpecificityStratificationStructureStructure-Activity RelationshipSurrogate MarkersSystemTestingTissuesToxic effectVerapamilWorkanalogbasedesigndofetilidedrug candidatedrug developmentdrug discoverydrug mechanismdrug rehabilitationfallshealthy volunteerheart electrical activityheart pharmacologyheart rhythmibutilideimprovedinterdisciplinary approachmathematical modelmulti-scale modelingnovelnovel strategiespre-clinicalpredictive modelingprototyperanolazinereceptorresearch studyscreeningsexsimulationsubcellular targetingvirtual
项目摘要
PROJECT SUMMARY: A major factor plaguing drug development is that there is no preclinical drug screen
that can accurately predict unintended drug induced cardiac arrhythmias. The current approaches rely on
substitute markers such as QT interval prolongation on the ECG. Unfortunately, QT prolongation is neither
specific nor sensitive to indicate likelihood of arrhythmias. There is an urgent need to identify a new approach
that can predict actual proarrhythmia rather than surrogate indicators. Mathematical modeling and simulation
constitutes one of the most promising methodologies to reveal fundamental biological principles and
mechanisms, model effects of interactions between system components and predict emergent drug effects.
Thus, we propose the development of a novel multiscale approach based on drug-channel structural
interactions and kinetics intended to predict drug induced cardiotoxicity in the context of: 1) preclinical drug
screening, 2) drug rehabilitation, and 3) prediction of the intersection of drug effects and coexistent risk factors.
Our underlying hypothesis is that the fundamental mode of drug interaction derived from each drug’s unique
structure activity relationship determines the resultant effects on cardiac electrical activity in cells and tissue.
By capturing these complex drug channel interactions in a model, we expect to be able to predict drug safety
or electro-toxicity in the heart. We have brought together an expert team to assemble and test a new multiscale
model framework that connects detailed mathematical models to predict atomic scale interactions of drugs on
the promiscuous hERG potassium channel to functional scale predictions at the level of the channel, cell and
tissue. Predictions from the atomic structure simulations will be used to inform the kinetic parameters of
models that capture the complex dynamical interactions of drugs and ion channels. The computational
components will then be studied in predictive models at the channel, cell and tissue scales to expose
fundamental mechanisms and complex interactions underlying emergent behaviors. Experiments in
mammalian cells and tissues will be undertaken to validate model predictions. Drug properties will be
perturbed in models to rehabilitate dangerous drugs and reduce their potential toxicity. The multiscale model
for prediction of cardiopharmacology that we will develop in this application will be applied to projects
demonstrating its usefulness for efficacy or toxicity of drug treatments in the complex physiological system of
the heart.
项目概述:阻碍药物开发的一个主要因素是没有临床前药物筛选
可以准确预测药物引起的心律失常目前的方法依赖于
替代标记物,如ECG上的QT间期延长。不幸的是,QT间期延长
对心律失常可能性的指示既不特异也不敏感。迫切需要确定一种新的办法
可以预测实际的心律失常而不是替代指标。数学建模与仿真
构成了揭示基本生物学原理的最有前途的方法之一,
机制,模型系统组件之间的相互作用的影响,并预测紧急的药物作用。
因此,我们提出了一种新的基于药物通道结构的多尺度方法的发展
相互作用和动力学,旨在预测药物诱导的心脏毒性:1)临床前药物
筛查,2)药物康复,3)药物作用与共存危险因素交叉的预测。
我们的基本假设是,药物相互作用的基本模式来自于每种药物的独特性。
构效关系决定了对细胞和组织中心脏电活动的最终影响。
通过在模型中捕捉这些复杂的药物通道相互作用,我们期望能够预测药物安全性
或心脏电中毒。我们已经召集了一个专家团队来组装和测试一个新的多尺度
模型框架,连接详细的数学模型,以预测药物在原子尺度上的相互作用。
混杂的hERG钾通道在通道、细胞和
组织.从原子结构模拟的预测将被用来通知的动力学参数,
捕获药物和离子通道的复杂动力学相互作用的模型。计算
然后将在通道、细胞和组织尺度的预测模型中研究组分,
涌现行为背后的基本机制和复杂互动。实验
哺乳动物细胞和组织将被用来验证模型预测。药物性质将是
在模型中扰动,以恢复危险药物并降低其潜在毒性。多尺度模型
我们将在此应用中开发的心脏药理学预测将应用于项目
证明了其对于药物治疗在复杂生理系统中的功效或毒性的有用性,
心脏
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
COLLEEN E CLANCY其他文献
COLLEEN E CLANCY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('COLLEEN E CLANCY', 18)}}的其他基金
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10406687 - 财政年份:2021
- 资助金额:
$ 73.97万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10394236 - 财政年份:2020
- 资助金额:
$ 73.97万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10614418 - 财政年份:2020
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10397892 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10001997 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10092300 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10215080 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 73.97万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 73.97万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 73.97万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 73.97万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 73.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)