In silico safety pharmacology
计算机安全药理学
基本信息
- 批准号:10480737
- 负责人:
- 金额:$ 72.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-05 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAdrenergic ReceptorAgreementAnti-Arrhythmia AgentsArrhythmiaAwardBackBehaviorBindingCardiacCardiotoxicityCategoriesCellsChemical StructureChemicalsChemistryClinical DataComplexComputer ModelsDangerousnessDataDevelopmentDisciplineDiseaseDissectionDrug CombinationsDrug DesignDrug InteractionsDrug KineticsDrug ScreeningDrug toxicityElectrocardiogramExperimental ModelsExposure toGoalsHeartHumanInvestigationIon ChannelKineticsMachine LearningMapsMedicineMethodologyModelingMolecularMolecular ConformationMovementPharmaceutical PreparationsPharmacologyPharmacotherapyPhysiciansPhysiologicalPoisonPotassium ChannelProcessProdrugsPropertyResearch PersonnelRiskSafetyScreening procedureSignal TransductionStructureStructure-Activity RelationshipSystemTherapeuticTimeTissuesValidationWorkbasebeta-adrenergic receptorcomputational pipelinesdeep learningdesigndrug developmentdrug discoverydrug mechanismdrug structureheart rhythmimprovedin silicoinnovationinsightlearning strategymulti-scale modelingnovelnovel strategiespredictive modelingprotein functionscale upscreeningside effectsimulationvirtualvoltage
项目摘要
PROJECT SUMMARY: A major factor plaguing drug development is that there is no drug-screening tool that
can distinguish between drugs that will induce cardiac arrhythmias from chemically similar safe drugs. The
current approaches rely on substitute markers such as action potential duration or QT interval prolongation on
the ECG. There is an urgent need to identify a new approach that can predict actual proarrhythmia from the drug
chemistry rather than relying on surrogate indicators. We have brought together an expert team to innovate at
the interfaces of experimental and computational modeling disciplines and develop an in silico simulation pipeline
to predict cardiotoxicity over multiple temporal and spatial scales from the atom to the cardiac rhythm.
An essential and unique aspect of our approach is that we propose to utilize atomistic scale simulation to predict
the transition rates of ion channels and adrenergic receptors and how they are modified by drug interaction. We
hypothesize that it is the subtleties of these interactions that are likely to be the critical determinants of drug
associated safety or proarrhythmia. In the last award period, we successfully developed an unprecedented
linkage: We connected the highly disparate space and time scales of ion channel structure and function. We
utilized atomistic simulation to compute drug kinetic rates were directly used as parameters in a hERG function
model. The model components were then integrated into predictive models at the cell and tissue scales to expose
fundamental arrhythmia vulnerability mechanisms and complex interactions underlying emergent behaviors.
Human clinical data were used for model validation and showed excellent agreement, demonstrating feasibility
of this new approach for cardiotoxicity prediction. In this renewal application we propose to hugely extend this
approach to include prediction of the interaction of cardiac channel gating and drug interaction as well as the
inclusion of adrenergic receptor interactions with drugs. Another essential aspect of safety pharmacology is the
development of new approaches to allow more efficient drug design, screening and prediction of cardiotoxicity.
Therefore, we will seek to develop, extend and apply a variety of machine learning and deep learning approaches
to improve drug discovery by predicting proarrhythmia from the drug chemistry with an efficient process that
identify drug congeners via machine learning to maximize therapy and minimize side effects. Finally, we propose
to classify drugs into categories based on proarrhythmia risk in normal and diseased virtual tissue settings. The
multiscale model for prediction of cardiopharmacology that we will develop in this application will be applied to
projects demonstrating its usefulness for efficacy or toxicity of drug treatments in the complex physiological
system of the heart.
项目摘要:困扰药物开发的一个主要因素是没有药物筛选工具
可以区分会导致心律失常的药物和化学上类似的安全药物。这个
目前的方法依赖于替代标记物,如动作电位时程或QT间期延长
心电图仪。迫切需要确定一种新的方法,可以从药物中预测实际的心律失常
化学,而不是依赖于替代指示剂。我们汇聚了一支创新的专家团队
实验和计算建模学科的接口,并开发了一个在线模拟流水线
在从原子到心律的多个时间和空间尺度上预测心脏毒性。
我们方法的一个基本和独特的方面是,我们提议利用原子尺度模拟来预测
离子通道和肾上腺素能受体的转移率以及药物相互作用如何改变它们。我们
假设正是这些相互作用的微妙之处可能是药物的关键决定因素
相关的安全性或心律失常。在上一届颁奖期间,我们成功地开发出了前所未有的
联系:我们连接了离子通道结构和功能的高度不同的空间和时间尺度。我们
利用原子模拟计算药物动力学速率,直接用作Herg函数中的参数
模特。然后,将模型组件集成到细胞和组织尺度的预测模型中,以揭示
基本的心律失常易损性机制和潜在紧急行为的复杂相互作用。
人类临床数据用于模型验证,并显示出极好的一致性,证明了可行性
这一新的心脏毒性预测方法。在这份续订申请中,我们建议大幅延长这一期限
包括预测心脏通道门控和药物相互作用的方法以及
包括肾上腺素能受体与药物的相互作用。安全药理学的另一个基本方面是
开发新的方法,以实现更有效的药物设计、心脏毒性的筛选和预测。
因此,我们将寻求开发、扩展和应用各种机器学习和深度学习方法
通过从药物化学预测心律失常的有效过程来改进药物发现
通过机器学习识别药物同系物,以最大限度地提高治疗效果并将副作用降至最低。最后,我们建议
根据正常和疾病虚拟组织环境中的心律失常风险将药物分类。这个
我们将在本应用中开发的用于心脏药理学预测的多尺度模型将应用于
展示其在复杂生理学药物治疗中的有效性或毒性的项目
心脏系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
COLLEEN E CLANCY其他文献
COLLEEN E CLANCY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('COLLEEN E CLANCY', 18)}}的其他基金
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10406687 - 财政年份:2021
- 资助金额:
$ 72.09万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10394236 - 财政年份:2020
- 资助金额:
$ 72.09万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10614418 - 财政年份:2020
- 资助金额:
$ 72.09万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10397892 - 财政年份:2018
- 资助金额:
$ 72.09万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10001997 - 财政年份:2018
- 资助金额:
$ 72.09万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10092300 - 财政年份:2018
- 资助金额:
$ 72.09万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10215080 - 财政年份:2018
- 资助金额:
$ 72.09万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 72.09万 - 项目类别:
Research Grant














{{item.name}}会员




