Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
基本信息
- 批准号:10237345
- 负责人:
- 金额:$ 37.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaBayesian AnalysisBiochemicalBiochemical PathwayBiologicalCell modelCell physiologyCellsCellular biologyCentrosomeChemistryChromosome SegregationChromosomesClostridium perfringensComplexCouplingDataFeedbackFunctional disorderFutureHealthIndividualKnowledgeLaboratoriesLawsMalignant NeoplasmsMechanicsMethodologyMethodsMicrobial BiofilmsMitosisMitotic spindleModelingMolecularMyxococcus xanthusPhysicsProcessRegulatory PathwayResearchRoleSignal TransductionTechnologyTherapeutic Agentsantimicrobialbasecancer therapycell motilitydriving forceexperienceexperimental studyheterogenous datainnovationmathematical modelmicrobial communitynovelspatiotemporaltool
项目摘要
Project Summary
The PI’s laboratory focuses on mathematical modeling of spatiotemporal and mechanical processes in living
cells, as well as their coupling to biochemical regulatory pathways. Although critical for many cellular functions,
spatiotemporal and mechanical processes remain poorly understood. Experimentally, it is yet impossible to
simultaneously track the spatiotemporal and mechanical dynamics of multiple molecular species involved in
complex cellular functions, which hinders coherent mechanistic understanding. Mathematical modeling presents
a powerful tool that can integrate heterogeneous data with basic laws of physics and chemistry, propose coherent
mechanistic frameworks, and guide new experiments. Due to many strong physical constraints, modeling the
spatiotemporal and mechanical dynamics in a cell can be more tractable than modeling the complex signaling
networks, and can provide a central framework to which additional biological details can be gradually added.
Equipped with her rich experience in modeling cellular spatiotemporal and mechanical dynamics and their
feedback with biochemical signaling, the PI will focus her research over the next five years on several topics in
two areas of cell biology that involve salient spatiotemporal and mechanical dynamics. The first area is mitotic
spindle assembly and chromosome segregation. The PI’s research in this area will elucidate how the
spatiotemporal, mechanical and biochemical dynamics interplay to achieve proper spindle assembly and faithful
chromosome segregation. The research will particularly focus on the cellular mechanisms behind centrosome
clustering and chromosome oscillation. The proper execution of these mechanisms and their dysfunction have
strong implications in cancer. Hence, knowledge to be obtained from this study will illuminate future innovations
in cancer therapy. The second area is bacterial motility and control. The PI’s research in this area will tackle how
bacterial motility is driven, regulated and coordinated, processes that are critical for formation and organization
of microbial communities like biofilms. The research will focus on two novel gliding motilities found in Myxococcus
xanthus and Clostridium perfringens. Both motilities involve intriguing intercellular interactions, either for
coordinating motility between individual cells, or for supplying the driving force. Knowledge to be generated by
the study will stimulate future health-related innovations, such as novel antimicrobial treatments and bacterial
therapeutic agents. Last but not least, the PI will develop new methodology to address the challenge of
comparing traditional, physics-based models with noisy data obtained through the latest experimental
technologies. Particularly, she will introduce Bayesian inference to her modeling research and streamline the
methodology for the data and models in the specific research topics. These methods will be transferable to other
research in the field of quantitative cell biology where similar challenges in model-data comparison arise.
项目摘要
PI的实验室专注于生活中时空和机械过程的数学建模
细胞,以及它们与生化调节通路的耦合。尽管对许多细胞功能至关重要,
时空和力学过程仍然知之甚少。从实验上讲,目前还不可能
同时跟踪多个分子物种的时空和力学动力学
复杂的细胞功能,这阻碍了连贯的机械理解。数学建模呈现
一个强大的工具,可以将不同的数据与基本的物理和化学定律集成在一起,提出连贯的
机械框架,并指导新的实验。由于许多强烈的物理限制,对
细胞中的时空和机械动力学可能比对复杂的信号进行建模更容易处理
网络,并可以提供一个中央框架,可以逐步增加更多的生物学细节。
拥有丰富的细胞时空和力学动力学建模经验,以及
通过生化信号的反馈,PI将在未来五年内将她的研究重点放在以下几个主题上
细胞生物学的两个领域,涉及显著的时空动力学和机械动力学。第一个区域有丝分裂。
纺锤体组装和染色体分离。公安局在这方面的研究将阐明
时空、机械和生化动力学相互作用,实现适当的主轴装配和精确度
染色体分离。这项研究将特别关注中心体背后的细胞机制。
聚集性和染色体振荡。这些机制的正确执行和它们的功能失调
对癌症有很强的影响。因此,从这项研究中获得的知识将照亮未来的创新
在癌症治疗中。第二个领域是细菌的运动和控制。PI在这一领域的研究将解决如何
细菌的运动受到驱动、调节和协调,这些过程对细菌的形成和组织至关重要
微生物群落,如生物膜。这项研究将集中在粘球菌中发现的两种新的滑行运动
黄花菌和产气荚膜梭菌。这两种运动都涉及到有趣的细胞间相互作用,要么是为了
协调单个细胞之间的运动,或提供驱动力。将由以下人员生成的知识
这项研究将刺激未来与健康相关的创新,如新的抗菌治疗和细菌
治疗剂。最后但并非最不重要的一点是,国际和平研究所将开发新的方法来应对
将传统的、基于物理的模型与通过最新实验获得的噪声数据进行比较
技术。特别是,她将把贝叶斯推理引入她的建模研究,并简化
具体研究课题中数据和模型的方法论。这些方法将可移植到其他
在模型数据比较中出现类似挑战的定量细胞生物学领域的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Chen其他文献
Porous nanocubic Mn3O4–Co3O4 composites and their application as electrochemical supercapacitors†
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:
- 作者:
Huan Pang;Jiawei Li;Jimin Du;Sujuan Li;Juan LI;Yahui Ma,;Jiangshan Zhang;Jing Chen; - 通讯作者:
Jing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Chen', 18)}}的其他基金
The role of EMT transcription factor Zeb2 in fetal hematopoiesis
EMT转录因子Zeb2在胎儿造血中的作用
- 批准号:
10604587 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Dietary trans-vaccenic acid enhances anti-tumor immunity
膳食反式牛油酸增强抗肿瘤免疫力
- 批准号:
10562449 - 财政年份:2022
- 资助金额:
$ 37.08万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK
氧化戊糖磷酸途径调节 AMPK
- 批准号:
10381359 - 财政年份:2021
- 资助金额:
$ 37.08万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10028816 - 财政年份:2020
- 资助金额:
$ 37.08万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10471262 - 财政年份:2020
- 资助金额:
$ 37.08万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10305369 - 财政年份:2014
- 资助金额:
$ 37.08万 - 项目类别:
Signaling and Targeting of 6-Phosphogluconate Dehydrogenase in Human Cancers
人类癌症中 6-磷酸葡萄糖酸脱氢酶的信号传导和靶向
- 批准号:
9000567 - 财政年份:2014
- 资助金额:
$ 37.08万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10580662 - 财政年份:2014
- 资助金额:
$ 37.08万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10524081 - 财政年份:2014
- 资助金额:
$ 37.08万 - 项目类别:
Signaling and Targeting of 6-Phosphogluconate Dehydrogenase in Human Cancers
人类癌症中 6-磷酸葡萄糖酸脱氢酶的信号传导和靶向
- 批准号:
8630691 - 财政年份:2014
- 资助金额:
$ 37.08万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant














{{item.name}}会员




