Computerized Adaptive Suicidal Risk Stratification and Prediction
计算机化自适应自杀风险分层和预测
基本信息
- 批准号:10254382
- 负责人:
- 金额:$ 74.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAdoptionAdultArchitectureBehaviorBlindedCaringCessation of lifeClinicalComputer softwareDataData StoreDatabasesDetectionElectronic Health RecordElementsEmergency Department patientEmergency department visitEnrollmentEnsureEnvironmentEquationEvaluationFeedbackFoundationsFundingHealth PersonnelHealth systemHealthcareHealthcare SystemsIndividualInjuryIntakeInterventionInterviewIntuitionLiteratureLocationMachine LearningManualsMassachusettsMeasurementMeasuresMedicalMental HealthMental TestsMethodsMonitorNational Institute of Mental HealthParticipantPatient Outcomes AssessmentsPatient Self-ReportPatient-Focused OutcomesPatientsPerformancePhasePlayProductionProtocols documentationPsychometricsPsychopathologyPublishingResearchResearch AssistantResearch TrainingRiskRisk AssessmentSamplingScheduleScreening procedureSelf-DirectionSeveritiesSmall Business Innovation Research GrantStandardizationStructureSuicideSuicide preventionSystemTabletsTestingTimeTravelUnited StatesUniversitiesViolenceVisitWorkadvanced analyticsbasebrief interventionclinical decision supportclinical decision-makingcomputerizeddata visualizationdesignflexibilityhandheld mobile devicehealth care settingsimprovedindexinginnovationinstrumentlearning strategypatient populationpoint of careprofessorprogramspsychiatric emergencyrisk predictionrisk prediction modelrisk stratificationscreeningsecondary outcomesubstance misusesuicidalsuicidal behaviorsuicidal risksuicide modelsystematic reviewusabilityuser centered design
项目摘要
ABSTRACT
In the next 60 minutes, at least 57 people in the United States (US) will attempt to kill themselves, and five will
die. Over 80% of these individuals encountered a healthcare provider in the 12 months before his or her death,
but their risk will have gone undetected or, if detected, poorly quantified and not sufficiently monitored
longitudinally. The proposed research will address this deficit by building and validating the Computerized
Adaptive Test for Suicide Scale -- Expanded (CAT-SS EXPANDED), software that can screen for, quantify,
and monitor suicide risk in a way far superior to existing instruments. It will enable at least three key Zero
Suicide performance elements, including systematic, standardized frontline suicide risk screening and
measurement (Identify), tracking and communicating risk across locations of care (Transitions), and monitoring
changes in patient outcomes resulting from continuous quality improvement activities (Improve). In a paradigm
shifting innovation, the CAT-SS EXPANDED will not only comprise the first multi-dimensional CAT of its kind, it
will import suicide risk indicators that have already been validated by the NIMH-funded Mental Health
Research Network (MHRN) directly from a health system’s electronic health record (EHR). This SBIR Fast
Track has two phases. Phase 1 will build the CAT-SS EXPANDED, starting with well-established preliminary
work and using iterative user testing with 20 clinician-patient dyads to refine the features. Phase 2 will have
two Aims. The first Aim will validate the CAT-SS EXPANDED against an independent research clinician’s
suicide risk stratification and suicidal behavior 24 weeks after the index visit (n=700). The second Aim will
complete two-way integration of the validated CAT-SS EXPANDED into UMass’ EHR production environment
and will evaluate clinical usability and acceptability with a new sample of ~30 suicide-risk enriched patients.
Innovation and Impact: While traditional suicide screening tools exist, they are very limited, a conclusion
supported by systematic reviews, the National Action Alliance for Suicide Prevention, and the NIMH. Because
of these limitations, strong, well-validated clinical decision support to guide appropriate levels of care do not
exist, reinforcing non-standardized and inefficient workflow, such as a tendency to conservatively order
unnecessary emergency psychiatric evaluations. The CAT-SS EXPANDED will address these well-known
measurement limitations using cutting edge strategies embodied in multi-dimensional CAT and EHR-derived
risk indicators, an unprecedented capability impossible to achieve with existing measures. While this study
focuses on the ED as a starting point because of its well-known risk burden and emerging literature supporting
the value of universal suicide risk screening combined with brief interventions, the CAT-SS EXPANDED will be
specifically designed and later tested as the first approach to suicide risk monitoring suitable for enterprise
deployment across settings and locations of care, which is transformational for suicide prevention and
fundamental to the Zero Suicide model’s emphasis on holistic system change.
摘要
在接下来的60分钟内,美国至少有57人试图自杀,5人将在
死的超过80%的人在他或她去世前的12个月内遇到了医疗保健提供者,
但它们的风险将没有被发现,或者即使被发现,也没有得到充分的量化和监测
纵向。拟议的研究将通过建立和验证计算机化的
自杀量表自适应测试-扩展(CAT-SS扩展),软件可以筛选,量化,
并以一种远优于现有仪器的上级方式监测自杀风险。它将使至少三个关键零
自杀表现元素,包括系统化、标准化的前线自杀风险筛查,
测量(识别)、跨护理地点跟踪和沟通风险(过渡),以及监控
持续质量改进活动(Improve)导致的患者结局变化。在一个范例中,
通过不断创新,CAT-SS EXPANDED不仅将包括同类产品中的第一个多维CAT,
将导入已经由NIMH资助的心理健康中心验证的自杀风险指标,
研究网络(MHRN)直接从卫生系统的电子健康记录(EHR)。此SBIR快速
轨道有两个阶段。第一阶段将建立CAT-SS EXPANDED,从完善的初步
工作和使用迭代用户测试与20临床医生-患者的二人组,以完善功能。第二阶段将有
两个目标。第一个目标将根据独立研究临床医生的
自杀风险分层和索引访视后24周的自杀行为(n=700)。第二个目标将
将经过验证的CAT-SS EXPANDED完全双向集成到马萨诸塞大学的EHR生产环境中
并将评估临床可用性和可接受性与一个新的样本约30自杀风险丰富的患者。
创新和影响:虽然传统的自杀筛查工具存在,但它们非常有限,结论是
该研究得到了系统评价、全国预防自杀行动联盟和NIMH的支持。因为
在这些局限性中,强有力的、经过充分验证的临床决策支持,以指导适当的护理水平,
存在,加强非标准化和效率低下的工作流程,如倾向于保守订购
不必要的紧急精神评估CAT SS EXPANDED将解决这些众所周知的
测量的限制,使用尖端战略体现在多维CAT和EHR派生
风险指标,这是现有措施无法实现的前所未有的能力。虽然这项研究
由于其众所周知的风险负担和新兴文献支持,
普遍的自杀风险筛查结合简单干预的价值,CAT-SS扩展将
专门设计,后来被测试为第一种适合企业的自杀风险监测方法
在护理环境和地点进行部署,这对自杀预防和
零自杀模型强调整体系统变革。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin D Boudreaux其他文献
Edwin D Boudreaux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin D Boudreaux', 18)}}的其他基金
The Center for Accelerating Practices to End Suicide through Technology Translation (CAPES)
通过技术转化加速结束自杀实践中心 (CAPES)
- 批准号:
10577117 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
CDR Administrative Supplement for COVID-19 Impacted NIMH Research
针对受新冠肺炎 (COVID-19) 影响的 NIMH 研究的 CDR 行政补充
- 批准号:
10617502 - 财政年份:2022
- 资助金额:
$ 74.66万 - 项目类别:
Telehealth to Improve Prevention of Suicide (TIPS) in EDs
远程医疗可改善急诊科的自杀预防 (TIPS)
- 批准号:
10322028 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别:
Telehealth to Improve Prevention of Suicide (TIPS) in EDs
远程医疗可改善急诊科的自杀预防 (TIPS)
- 批准号:
10532210 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别:
Reward-based technology to improve opioid use disorder treatment initiation after an ED visit
基于奖励的技术可改善急诊就诊后阿片类药物使用障碍治疗的启动
- 批准号:
10414138 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
Reward-based technology to improve opioid use disorder treatment initiation after an ED visit
基于奖励的技术可改善急诊就诊后阿片类药物使用障碍治疗的启动
- 批准号:
10337501 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
Reward-based technology to improve opioid use disorder treatment initiation after an ED visit
基于奖励的技术可改善急诊就诊后阿片类药物使用障碍治疗的启动
- 批准号:
10794875 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
Deriving a Clinical Decision Rule for Suicide Risk in the Emergency Department Setting
得出急诊科自杀风险的临床决策规则
- 批准号:
10299606 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 74.66万 - 项目类别:
Research Grant