CRCNS Circuit-Level Mechanisms of Adaptive decision-making
CRCNS 自适应决策的电路级机制
基本信息
- 批准号:10261528
- 负责人:
- 金额:$ 33.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Addictive BehaviorAlgorithmsAnimalsBasal GangliaBehaviorBehavioralBiologicalBrainCardiovascular DiseasesCognitiveConflict (Psychology)Corpus striatum structureDecision MakingEnvironmentEquilibriumEvaluationFeedbackFrequenciesFunctional disorderFutureGoalsHumanInstructionInvestigationLearningLinkMammalsMapsMediatingModelingNatureNeuronal PlasticityObesityOpiate AddictionOutcomePathway interactionsPhenotypePoliciesPopulationProbabilityProcessPropertyPsychological reinforcementPublic HealthResearchRewardsRiskRodentScheduleSeriesSignal TransductionSiteStructure of subthalamic nucleusSystemTestingThalamic structureaddictionbehavior observationcell typecognitive processcomputer frameworkdensityexperimental studyflexibilityin vivoinsightneural circuitneural networknovel strategiesoptogeneticsprogramsrelating to nervous systemsuccess
项目摘要
Mammals continuously adapt the process of action selection in noisy and volatile environments to maximize
the success of future decisions by either selecting actions that are likely to return a desirable result
(exploitation) or taking a risk on something new to see if that will produce a better outcome (exploration).
This flexible decision-making is mediated by cortico-basal-ganglia-thalamic (CBGT) circuits that both control
action selection and use feedback signals to modify the approach to future decisions (i.e., undergo
reinforcement learning; RL). Dysfunction in how these pathways use feedback to guide future decisions is a
primary mechanism for many addictive behaviors (e.g., opioid addiction, obesity). Despite the fact that
decision-making and RL originate from a common neural substrate, they are generally studied as
independent processes. Understanding the unified nature of action selection and learning requires a careful
re-evaluation of how cognitive algorithms emerge from the circuit-level dynamics of CBGT networks.
We propose a series of empirical and theoretical investigations that bridge across levels of analysis to unify
algorithmic models of learning and decision-making in order to understand how CBGT networks use
feedback to manage the trade-off between exploration and exploitation. Our first step toward achieving this
goal will be to develop a computational “upwards mapping” framework that links cognitive process models
with biologically realistic spiking models of CBGT networks under constraints imposed by existing behavioral
observations from a set of adaptive decision-making experiments. This approach will allow us to derive
testable predictions about how different CBGT network properties (e.g., population activity levels or pathway
connection strengths) scale cognitive processes (e.g., evidence accumulation rate) to produce distinct
phenotypes of decision policies (Specific Aim 1a). Using this paradigm we will also generate predictions about
how, under changing conditions, neural plasticity mechanisms can adaptively shift CBGT networks into
distinct states that manage the exploration-exploitation trade-off in contextually appropriate ways (Specific
Aim 1b). Predictions will be tested experimentally using recordings in multiple key CBGT sites as well as
optogenetic perturbation of striatal and subthalamic nucleus targets in rodents performing a 2-armed bandit
task with static or variable action-outcome contingencies (Specific Aim 2).
RELEVANCE (See instructions):
Dysfunction in how the brain uses feedback to guide future decisions is a primary mechanism for many public health
problems (e.g., addiction, cardiovascular disease). This research program will provide new insights into how neural
circuits give rise to decision-making in humans and other mammals and how environmental contexts (e.g., volatility
of reward schedules) regulate brain network configurations to produce behavioral flexibility. This information can
provide key insights into the neural systems that give rise to addictive behaviors and other public health problems.
哺乳动物在噪声和挥发性环境中不断调整动作选择过程以最大化
通过选择可能返回理想结果的动作,未来决策的成功
(剥削)或冒险冒险新事物,看看这是否会产生更好的结果(探索)。
这种灵活的决策由Cortico-Basal-Ganglia-Thalamic(CBGT)循环介导
行动选择并使用反馈信号来修改未来决策的方法(即进行
强化学习; RL)。这些途径如何使用反馈指导未来决策的功能障碍是
许多其他行为的主要机制(例如阿片类药物成瘾,肥胖)。尽管事实
决策和RL起源于常见的神经底物,它们通常被研究为
独立过程。了解行动选择和学习的统一性质需要仔细
重新评估认知算法如何从CBGT网络的电路级动力学中出现。
我们提出了一系列经验和理论研究,这些研究跨越了分析水平,以统一
学习和决策的算法模型,以了解CBGT网络的使用方式
反馈以管理勘探和剥削之间的权衡。我们迈向实现这一目标的第一步
目标是开发一个链接认知过程模型的计算“向上映射”框架
CBGT网络的生物学上现实的尖峰模型受到现有行为施加的约束
一组自适应决策实验的观察。这种方法将使我们得出
关于不同CBGT网络属性的可检验预测(例如,人口活动水平或途径
连接强度)规模认知过程(例如,证据积累率)产生不同的
决策政策的表型(特定目标1A)。使用此范式,我们还将生成有关的预测
在不断变化的条件下,神经可塑性机制如何适应地将CBGT网络转移到
以上下文适当的方式管理勘探探索折衷的不同状态(具体
目标1b)。将使用多个关键CBGT站点中的记录以及
啮齿动物的纹状体和丘脑下核靶标的光遗传学扰动
具有静态或可变动作结果突发事件的任务(特定目标2)。
相关性(请参阅说明):
大脑如何使用反馈指导未来决策的功能障碍是许多公共卫生的主要机制
问题(例如成瘾,心血管疾病)。该研究计划将提供有关中立如何中立的新见解
电路引起人类和其他哺乳动物的决策以及环境环境如何(例如,波动性
奖励时间表)调节大脑网络配置以产生行为灵活性。此信息可以
对神经元系统提供关键见解,从而引起其他行为和其他公共卫生问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY D VERSTYNEN其他文献
TIMOTHY D VERSTYNEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY D VERSTYNEN', 18)}}的其他基金
CRCNS Circuit-Level Mechanisms of Adaptive decision-making
CRCNS 自适应决策的电路级机制
- 批准号:
10458080 - 财政年份:2020
- 资助金额:
$ 33.68万 - 项目类别:
相似国自然基金
加速器磁铁励磁电源扰动物理机制和观测抑制算法的研究
- 批准号:12305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:32270602
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向移动物联网的高效数据查询机制与算法研究
- 批准号:62072402
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
考虑充电站选址和容量限制的电动物流车辆路径问题研究
- 批准号:71901177
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
AI-assisted behavioral profiling of an invertebrate model to identify new psychedelic therapeutics for stimulant use disorders
人工智能辅助无脊椎动物模型的行为分析,以确定兴奋剂使用障碍的新迷幻疗法
- 批准号:
10467072 - 财政年份:2022
- 资助金额:
$ 33.68万 - 项目类别:
CRCNS Circuit-Level Mechanisms of Adaptive decision-making
CRCNS 自适应决策的电路级机制
- 批准号:
10458080 - 财政年份:2020
- 资助金额:
$ 33.68万 - 项目类别:
Watching a vertebrate brain learn and behave in a virtual environment
观察脊椎动物大脑在虚拟环境中学习和行为
- 批准号:
8704392 - 财政年份:2011
- 资助金额:
$ 33.68万 - 项目类别:
Measuring Alcohol and Stress Interactions with Structural and Perfusion MRI
通过结构和灌注 MRI 测量酒精和压力的相互作用
- 批准号:
7852105 - 财政年份:2009
- 资助金额:
$ 33.68万 - 项目类别:
Measuring Alcohol and Stress Interactions with Structural and Perfusion MRI
通过结构和灌注 MRI 测量酒精和压力的相互作用
- 批准号:
7234646 - 财政年份:2007
- 资助金额:
$ 33.68万 - 项目类别: