Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
基本信息
- 批准号:10262970
- 负责人:
- 金额:$ 258.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-29 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnatomyAtlasesAxonBRAIN initiativeBrainCatalogsCellsCellular MorphologyCensusesCharacteristicsClassificationContralateralCustomDataDiseaseElectrophysiology (science)FLP recombinaseFoundationsGeneticGoalsHealthHealth systemImageIndividualInformaticsInjectionsIntuitionIpsilateralKnowledgeLabelLaboratoriesLimbic SystemLiteratureLocationMapsMetadataMethodsMicroscopyMonstersMorphologyMusNeuronsOnline SystemsOrganizational ProductivityOutcomeOutputPatternProcessProteinsPublishingRabiesRabies virusResolutionResourcesSiteStructureSubcellular AnatomySynapsesTechnologyTissuesViralVirusVisualizationVisualization softwarebasecell typecollaboratorydesignexperimental studyhigh resolution imaginginformatics toolmicroscopic imagingmotivated behaviormultiphoton imagingnovelnovel strategiesrabies viral tracingreconstructionrepositoryresponseserial imagingtoolweb interface
项目摘要
PROJECT SUMMARY AND ABSTRACT
A comprehensive understanding neuronal cell type diversity is an essential guide to selective manipulation and
illuminating cell type specific functional contributions toward health and disease. Accordingly, the Brain
Initiative Cell Census Network (BICCN) is unifying the efforts of laboratories with unique expertise in anatomy,
genetics, electrophysiology, and function to classify neurons and create a common 3D atlas with integrated cell
type data. To this end, our proposed collaboratory aims to anatomically characterize neuronal cell types of the
mouse limbic system. Using mesoscale quadruple retrograde tracing, we will initially characterize cell types
based on the anatomical location of their connectional start and end points [e.g.,
ACB(contralateral)←BLAa→ACB(ipsilateral)]. A two-step cre-dependent AAV tracing strategy using advanced
viral tools will subsequently validate and refine specific axonal projections, collaterals, and projection fields
[e.g., ACB/X/Y←BLAa→ACB/X/Y]. Injections of G-deleted rabies in CLARITY-processed tissue will label
morphological features of cell types. Cre-dependent TRIO viral tracing will determine discrete inputs to each
cell type, providing deeper characterization of connectivity. Novel TRIO using flp recombinase in cre-
dependent mice will define projection patterns of genetically-defined cell types. Newly constructed AAV and
rabies viruses tagged to spaghetti monster fluorescent proteins, applied in combination with Expansion
Microscopy and multiphoton imaging, will determine the spatial organization of different synaptic inputs to the
cell types. Collectively, experiments will reveal cell type anatomic location, morphology, and comprehensive
connectivity. Initial efforts will focus on the limbic system, with the design extensible to neuronal
characterization of the entire brain. A web-based visualization platform will be developed to enable viewing and
analysis of cell type anatomy data in 2D and 3D. An online visualization tool similar in function to our
iConnectome viewer will present quadruple retrograde and TRIO tracing images. Digitized, reconstructed
quadruple retrograde, cre-AAV, and TRIO labeling will be placed atop the Allen Reference Atlas (ARA) to
create an online 2D connectivity map, allowing easy comparison of cell type specific inputs and outputs.
Common Coordinate Framework (CCF) registration and reconstruction of cre-AAV labeling experiments will
provide the cell type specific 3D context of projections, with input and morphological information integrated into
the viewer. An interactive, weighted and directed matrix will present an intuitive visualization of all connectivity
data. 3D reconstructed neurons will also be hosted on Neuromorpho.org for interspecies comparison. Our
current informatics pipelines will be extended and optimized to support the proposed viewer features. We
expect our technologies to elucidate diverse cell type specific networks and provide foundations for the
overarching goal of the BICCN of creating a comprehensive 3D cell type atlas.
项目总结和摘要
全面了解神经元细胞类型的多样性是选择性操作的重要指导,
阐明细胞类型对健康和疾病的特定功能贡献。因此,大脑
倡议细胞普查网络(BICCN)正在统一具有独特解剖学专业知识的实验室的努力,
遗传学、电生理学和功能,对神经元进行分类,并创建一个通用的3D图谱,
类型数据。为此,我们提议的合作实验室旨在从解剖学上表征大脑皮层的神经细胞类型。
小鼠边缘系统使用中尺度四重逆行追踪,我们将首先表征细胞类型
基于它们的连接起点和终点的解剖位置[例如,
ACB(对侧)←BLAa→ACB(同侧)]。使用先进的cre依赖的AAV两步追踪策略
病毒工具随后将验证和改进特定的轴突投射、侧枝和投射野
[e.g., ACB/X/Y←BLAa→ACB/X/Y]。在经免疫处理的组织中注射G-缺失狂犬病疫苗将标记
细胞类型的形态特征。依赖于Cre的TRIO病毒追踪将确定每个病毒的离散输入。
细胞类型,提供更深入的连通性表征。在cre中使用flp重组酶的新型TRIO-
依赖性小鼠将确定遗传上确定的细胞类型的投射模式。新构建的AAV和
狂犬病病毒标记到意大利面条怪物荧光蛋白,与扩展组合应用
显微镜和多光子成像将确定不同突触输入的空间组织。
细胞类型。总的来说,实验将揭示细胞类型解剖位置,形态,和全面的
连通性。最初的努力将集中在边缘系统,设计可扩展到神经元
整个大脑的特征。将开发一个基于网络的可视化平台,
分析二维和三维的细胞类型解剖数据。一个在线可视化工具,功能类似于我们的
iConnectome查看器将显示四重逆行和TRIO追踪图像。数字化,重建
四重逆行、cre-AAV和TRIO标签将放置在艾伦参考图谱(ARA)上,
创建一个在线2D连接图,允许轻松比较细胞类型特定的输入和输出。
cre-AAV标记实验的通用坐标框架(CCF)配准和重建将
提供投影的细胞类型特异性3D背景,其中输入和形态信息被集成到
观众。一个交互式的、加权的和有向的矩阵将呈现所有连通性的直观可视化
数据3D重建的神经元也将在Neuromorpho.org上进行物种间比较。我们
将扩展和优化现有的信息管道,以支持拟议的查看器功能。我们
我希望我们的技术能够阐明不同细胞类型的特异性网络,并为研究细胞间的相互作用提供基础。
BICCN的首要目标是创建一个全面的3D细胞类型图谱。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Third-generation rabies viral vectors allow nontoxic retrograde targeting of projection neurons with greatly increased efficiency.
第三代狂犬病病毒载体允许效率提高的投射神经元逆行逆行靶向。
- DOI:10.1016/j.crmeth.2023.100644
- 发表时间:2023-11-20
- 期刊:
- 影响因子:0
- 作者:Jin L;Sullivan HA;Zhu M;Lea NE;Lavin TK;Fu X;Matsuyama M;Hou Y;Feng G;Wickersham IR
- 通讯作者:Wickersham IR
"Self-inactivating" rabies viruses are susceptible to loss of their intended attenuating modification.
- DOI:10.1073/pnas.2023481120
- 发表时间:2023-02-14
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
An open access mouse brain flatmap and upgraded rat and human brain flatmaps based on current reference atlases.
- DOI:10.1002/cne.24966
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Hahn JD;Swanson LW;Bowman I;Foster NN;Zingg B;Bienkowski MS;Hintiryan H;Dong HW
- 通讯作者:Dong HW
Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond.
- DOI:10.1016/j.pbb.2017.12.010
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Knowland D;Lim BK
- 通讯作者:Lim BK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GIORGIO A ASCOLI其他文献
GIORGIO A ASCOLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GIORGIO A ASCOLI', 18)}}的其他基金
Long-range neuronal projections: circuit blueprint or stochastic targeting? Rigorous classification of brain-wide axonal reconstructions
远程神经元投射:电路蓝图还是随机目标?
- 批准号:
10360723 - 财政年份:2021
- 资助金额:
$ 258.26万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
10225863 - 财政年份:2020
- 资助金额:
$ 258.26万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
9567222 - 财政年份:2017
- 资助金额:
$ 258.26万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10649463 - 财政年份:2013
- 资助金额:
$ 258.26万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10162670 - 财政年份:2013
- 资助金额:
$ 258.26万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10404546 - 财政年份:2013
- 资助金额:
$ 258.26万 - 项目类别:
Reconstruction and Mapping of Human Brain Vasculature
人脑脉管系统的重建和绘图
- 批准号:
7860671 - 财政年份:2009
- 资助金额:
$ 258.26万 - 项目类别:
Neuroinformatics of the Hippocampus: From System-Level to Neuronal Arborizations
海马体的神经信息学:从系统级到神经元树枝化
- 批准号:
7532436 - 财政年份:2008
- 资助金额:
$ 258.26万 - 项目类别:
ANATOMICALLY ACCURATE NEURAL NETWORKS: BUILDING A HIPPOCAMPUS
解剖学上精确的神经网络:构建海马体
- 批准号:
7369377 - 财政年份:2006
- 资助金额:
$ 258.26万 - 项目类别:
ANATOMICALLY ACCURATE NEURAL NETWORKS: BUILDING A HIPPOCAMPUS
解剖学上精确的神经网络:构建海马体
- 批准号:
7182786 - 财政年份:2005
- 资助金额:
$ 258.26万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 258.26万 - 项目类别:
Continuing Grant