Reconstruction and Mapping of Human Brain Vasculature
人脑脉管系统的重建和绘图
基本信息
- 批准号:7860671
- 负责人:
- 金额:$ 20.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-05 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:Admission activityAlgorithmsAneurysmArchitectureAreaAtlasesBlood VesselsBrainBrain hemorrhageCause of DeathCerebrovascular DisordersCharacteristicsCollaborationsCommunitiesComputational BiologyDataData SetDevelopmentDiagnosisDimensionsDisease ProgressionEvaluationFemaleFractalsFunctional disorderFutureHumanImageIndividualIntracranial AneurysmKnowledgeLeftLengthMagnetic Resonance AngiographyMagnetic Resonance ImagingMapsMasksMeasurementMeasuresMetaphorMethodsModalityModelingNursing HomesOutcomePatientsPopulation StudyPrincipal InvestigatorReproducibilityScanningSpace PerceptionStrokeStructureSurfaceSystemTestingTimeTreesUnited StatesValidationVariantVascular Dementiaage relatedbasedigitaldisabilityhemodynamicsimprovedmaleprogramspublic health relevancereconstructionsoftware developmentvectorvirtual
项目摘要
DESCRIPTION (provided by applicant): Cerebrovascular diseases are a leading cause of death and long term disability in the United States. Detailed knowledge of the human brain's vascular architecture is important in relating hemodynamics to physiopathology, and can help optimize the diagnosis and treatment of cerebrovascular disease. This exploratory collaboration with the UCLA Center for Computational Biology (CCB) will develop a framework for the quantitative characterization of brain vasculature and its variability among normal subjects from non-invasive magnetic resonance angiography (MRA). The project is organized around three specific aims, broadly corresponding to angiographic reconstruction, analysis, and probabilistic atlasing:
Aim1 - Digital reconstruction of a normative set of MRA:
a) Build 3D vascular reconstructions from MRA data of normal subjects.
b) Evaluate and verify the vascular reconstructions using a battery of reliability tests.
Aim2 - Statistical morphometric analysis:
a) Characterize the geometry and branching topology of the arterial structures of the brain.
b) Conduct statistical analysis to establish inter-subject variability of the vascular structural characteristics and test for differences between males and females, and left/right hemispheres.
Aim3 - Probabilistic angiographic atlas: a) Construct a brain vascular atlas using the CCB registration pipeline and integrate with the other modalities of the CCB brain atlas.
At the completion of the project, the anonymized raw image stacks, the vascular reconstructions and the morphometric characterizations will be made available to the scientific community through the CCB pipeline. The datasets and information generated and disseminated will be of broad and extreme value. PUBLIC HEALTH RELEVANCE: This project aims at constructing brain vascular reconstructions from magnetic resonance angiography data and constructing a vascular atlas of the brain. Both the algorithms and data generated and disseminated in this project will be of broad and high value for a better understanding of the mechanisms involved in the initiation, progression and outcome of cerebrovascular diseases such as stroke and aneurysms. This knowledge is important for improving current evaluation and treatment of patients with cerebrovascular disease.
描述(申请人提供):在美国,脑血管疾病是导致死亡和长期残疾的主要原因。对人脑血管结构的详细了解对于将血流动力学与生理病理学联系起来非常重要,并有助于优化脑血管疾病的诊断和治疗。这项与加州大学洛杉矶分校计算生物学中心(CCB)的探索性合作将开发一个框架,用于从非侵入性磁共振血管成像(MRA)定量描述正常受试者的脑血管及其变异性。该项目围绕三个具体目标组织,大致对应于血管造影重建、分析和概率图谱:
AIM1-对一套标准化的MRA进行数字化重建:
A)根据正常受试者的MRA数据建立3D血管重建。
B)使用一系列可靠性测试来评估和验证血管重建。
AIM2--统计形态计量分析:
A)描述大脑动脉结构的几何学和分支拓扑学。
B)进行统计分析,以确定血管结构特征的对象间变异性,并测试男性与女性以及左右半球之间的差异。
目的3-概率血管造影图谱:a)使用CCB注册管道构建脑血管图谱,并与CCB脑图谱的其他形式集成。
在该项目完成后,将通过CCB管道向科学界提供匿名原始图像堆栈、血管重建和形态测量特征。产生和传播的数据集和信息将具有广泛和极端的价值。公共卫生相关性:该项目旨在根据磁共振血管成像数据构建脑血管重建,并构建脑血管图谱。该项目中产生和传播的算法和数据将对更好地理解中风和动脉瘤等脑血管疾病的发生、发展和结局所涉及的机制具有广泛和高度的价值。这一认识对改善脑血管疾病患者目前的评估和治疗具有重要意义。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Morphometric, geographic, and territorial characterization of brain arterial trees.
- DOI:10.1002/cnm.2627
- 发表时间:2014-07
- 期刊:
- 影响因子:2.1
- 作者:Mut F;Wright S;Ascoli GA;Cebral JR
- 通讯作者:Cebral JR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GIORGIO A ASCOLI其他文献
GIORGIO A ASCOLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GIORGIO A ASCOLI', 18)}}的其他基金
Long-range neuronal projections: circuit blueprint or stochastic targeting? Rigorous classification of brain-wide axonal reconstructions
远程神经元投射:电路蓝图还是随机目标?
- 批准号:
10360723 - 财政年份:2021
- 资助金额:
$ 20.16万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
10262970 - 财政年份:2020
- 资助金额:
$ 20.16万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
10225863 - 财政年份:2020
- 资助金额:
$ 20.16万 - 项目类别:
Anatomical characterization of neuronal cell types of the mouse brain
小鼠大脑神经元细胞类型的解剖学特征
- 批准号:
9567222 - 财政年份:2017
- 资助金额:
$ 20.16万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10649463 - 财政年份:2013
- 资助金额:
$ 20.16万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10162670 - 财政年份:2013
- 资助金额:
$ 20.16万 - 项目类别:
Cytoskeletal mechanisms of dendrite arbor shape development
树突乔木形状发育的细胞骨架机制
- 批准号:
10404546 - 财政年份:2013
- 资助金额:
$ 20.16万 - 项目类别:
Neuroinformatics of the Hippocampus: From System-Level to Neuronal Arborizations
海马体的神经信息学:从系统级到神经元树枝化
- 批准号:
7532436 - 财政年份:2008
- 资助金额:
$ 20.16万 - 项目类别:
ANATOMICALLY ACCURATE NEURAL NETWORKS: BUILDING A HIPPOCAMPUS
解剖学上精确的神经网络:构建海马体
- 批准号:
7369377 - 财政年份:2006
- 资助金额:
$ 20.16万 - 项目类别:
ANATOMICALLY ACCURATE NEURAL NETWORKS: BUILDING A HIPPOCAMPUS
解剖学上精确的神经网络:构建海马体
- 批准号:
7182786 - 财政年份:2005
- 资助金额:
$ 20.16万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Research Grant