How do astrocytes remodel neural circuits?
星形胶质细胞如何重塑神经回路?
基本信息
- 批准号:10593146
- 负责人:
- 金额:$ 12.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAreaAstrocytesAutomobile DrivingAwardBiologicalBiological AssayBiological MetamorphosisBrainCRISPR/Cas technologyCaenorhabditis elegansCell CommunicationCell modelCellsCellular biologyCollectionComplexDedicationsDefectDevelopmentDiseaseDrosophila genusEngineeringEventExhibitsFoundationsGene Expression ProfileGenesGenomicsGoalsHomologous GeneHumanImageKnowledgeLinkMembrane ProteinsMentorsModelingMolecularMolecular GeneticsMonitorMutationNervous SystemNeuritesNeurodevelopmental DisorderNeurogliaNeuronsNeurosciencesPathway interactionsPhagocytesPhagocytosisPhasePlayPreparationProcessRNA interference screenResearchResearch PersonnelRoleSchizophreniaScientistSeriesSignal PathwaySignal TransductionSpecificitySynapsesSyndromeSystemTertiary Protein StructureTestingTrainingVisualizationWorkWritingautism spectrum disorderautosomecareercareer developmentdesignflygene functionhuman diseasein vivomutantnervous system developmentnervous system disorderneuralneural circuitneural networkneuronal circuitryneuropsychiatric disordernovelnovel markernovel strategiesreceptorresearch and developmentresponsesuccesstooltrafficking
项目摘要
PROJECT SUMMARY
Pruning neuronal connections and eliminating superfluous neurons is required to generate optimized neuronal
circuits in the mature brain. Although it is well established that neurons and glia coordinate the refinement of
neural circuits, the molecular mechanisms underlying this process remain poorly defined. This K99/R00 proposal
will help me advance my career as I investigate the cellular mechanisms by which glia help refine neuronal
circuits during development. To generate a deep molecular understanding of neuronal remodeling, I will use the
Drosophila larval nervous system, which goes through extensive neuronal remodeling during metamorphosis. In
a preliminary screen for new model cells to study neuronal remodeling in vivo, I discovered several new markers
for cells that exhibit novel types of remodeling events. In addition, I conducted two large-scale screens to identify
new glial pathways that assist in pruning and the elimination of neuronal debris. First, using a single neuronal
lineage, I performed an in vivo RNAi screen for glial genes required for glial pruning of neurons. Second, I
transcriptionally profiled glia during pruning, identifying upregulated genes in glia, and also screened them for
regulators of neuronal remodeling. These genes will serve as a molecular entry point for me to define how glia
refine neural networks during development. During the mentored award phase, I will build a system that will allow
me to monitor the dynamic cell biological changes that occur during glial phagocytosis and will use this new
system to test novel molecules for their role remodeling. In Aim1, I will study the specific process of glial
phagocytosis using genetically encoded cellular markers and explant live imaging. These assays will serve as
the foundation for understanding how the molecules I identified play a role in glial phagocytosis. In Aim 2, I will
use this new system to understand how Tweek, a highly conserved molecule, functions during glial phagocytosis
of pruned neurons. Surprisingly, Tweek has no known protein domains or molecular function. I will use
CRISPR/Cas9 genomic engineering to create human disease-associated mutations in the fly. This will potentially
allow me to understand how mutations in Tweek's human homolog KIAA1109 cause a rare autosomal
neurological disease. Finally, in Aim 3, which will be mostly carried out in my own lab, I will use the tools I build
in this proposal to examine how a collection of newly identified phagocytic receptors drive neuronal remodeling
of synapses, neurites, and in multiple types of lineages. I outlined a series of research and career development
milestones that will be met during this award and allow me to grow as a scientist. To strengthen areas needed
for a successful research career, the aims are combined with neuroscience coursework and training in areas
such as scientific writing, mentoring, and project design. I have a committee made up of an excellent group of
scientists who are dedicated to my success and eager to assist me in my professional development. My long-
term career goal as an independent investigator is to understand the molecular mechanisms of neuronal
remodeling and how abnormalities in this process are associated with neurodevelopmental disorders.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUNSIK KANG其他文献
YUNSIK KANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUNSIK KANG', 18)}}的其他基金
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant