Data Science Guided Organic Reaction Development
数据科学引导有机反应开发
基本信息
- 批准号:10594017
- 负责人:
- 金额:$ 50.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsCatalysisCommunitiesCoupledDataData CollectionData ScienceData SetDevelopmentFoundationsKnowledgeMathematicsMedicineMethodsModernizationOutcomePathway interactionsPerformanceProcessReactionReagentSortingStatistical MethodsStatistical ModelsSubstrate InteractionTrainingWorkcatalystchemical synthesiscomputational chemistrycostdata miningdesignempowermentinsightinterestnovel strategiesoptimismprocess optimizationprogramstooluptake
项目摘要
PROJECT SUMMARY
The overarching objective of our program is to define general data science driven workflows that
incorporate physical organic precepts and can be deployed directly within the reaction
optimization process. Successfully developing such a workflow would have three key impacts
on the chemical synthesis enterprise: 1) significantly streamline the empirical, costly process of
reaction optimization, 2) algorithms would be applied to predict how new substrates, catalysts,
and reagents (as well as reaction conditions) perform in the reaction of interest as
extrapolations of this sort are poorly intuited. The ability to know quantitatively the
generalizability of a reaction will rapidly accelerate the uptake of new methods in chem ical
synthesis. And 3) as the data driven tools described herein utilize physical organic methods to
describe molecules mathematically, the resulting correlations derived from empirical data can
be interpreted to provide mechanistic insights into how catalysts/substrates interact. This
provides one with the foundation to “transfer” knowledge to new reactions and develop general
catalyst design principles. We plan to continue to deliver to the community a compelling reason
to change the culture of reaction development from empirical optimization and observations to
an insightful, efficient, and high quality data producing process. This work will be accomplished
in the context of asymmetric catalysis and focus on the following question: can we develop tools
to predict reaction outcomes for completely new examples not represented within the training
dataset required for the initial correlation, while simultaneously having interpretable/explainable
statistical models? This will be accomplished by exploring various enantioselective processes
catalyzed by a multitude of catalysts and interrogating the processes using modern
computational chemistry and statistical methods. We will validate these new approaches by
exploring if data-mining and new data collection can be used to build correlations with structural
features of molecules for the prediction of altogether new examples. Within this we will ask
fundamental questions about how catalyst dynamics coupled with non-covalent interactions
impact catalyst performance and how to compile this information for new catalyst design
strategies. Ultimately, we plan to deliver to the community a platform and pathway to facilitate
reaction optimism holistically using easy to apply data science methods.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW S SIGMAN其他文献
MATTHEW S SIGMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW S SIGMAN', 18)}}的其他基金
Data Science Guided Organic Reaction Development
数据科学引导有机反应开发
- 批准号:
10364757 - 财政年份:2020
- 资助金额:
$ 50.35万 - 项目类别:
Data Science Guided Organic Reaction Development
数据科学引导有机反应开发
- 批准号:
10382102 - 财政年份:2020
- 资助金额:
$ 50.35万 - 项目类别:
Discovery Based Studies of Medicinally Relevant Pharmacophore Libraries
基于发现的医学相关药效团库研究
- 批准号:
7945926 - 财政年份:2010
- 资助金额:
$ 50.35万 - 项目类别:
Discovery Based Studies of Medicinally Relevant Pharmacophore Libraries
基于发现的医学相关药效团库研究
- 批准号:
8129740 - 财政年份:2010
- 资助金额:
$ 50.35万 - 项目类别:
Discovery Based Studies of Medicinally Relevant Pharmacophore Libraries
基于发现的医学相关药效团库研究
- 批准号:
8272686 - 财政年份:2010
- 资助金额:
$ 50.35万 - 项目类别:
Identification of Novel Cancer Selective Compounds in 3D Tumor Organoid Assays
在 3D 肿瘤类器官检测中鉴定新型癌症选择性化合物
- 批准号:
8278689 - 财政年份:2009
- 资助金额:
$ 50.35万 - 项目类别:
Pd-Catalyzed Olefin Functionalization Reactions for Organic Synthesis
Pd 催化的有机合成烯烃官能化反应
- 批准号:
7916141 - 财政年份:2009
- 资助金额:
$ 50.35万 - 项目类别:
Identification of Novel Cancer Selective Compounds in 3D Tumor Organoid Assays
在 3D 肿瘤类器官检测中鉴定新型癌症选择性化合物
- 批准号:
7696554 - 财政年份:2009
- 资助金额:
$ 50.35万 - 项目类别:
Identification of Novel Cancer Selective Compounds in 3D Tumor Organoid Assays
在 3D 肿瘤类器官检测中鉴定新型癌症选择性化合物
- 批准号:
8082794 - 财政年份:2009
- 资助金额:
$ 50.35万 - 项目类别:
Identification of Novel Cancer Selective Compounds in 3D Tumor Organoid Assays
在 3D 肿瘤类器官检测中鉴定新型癌症选择性化合物
- 批准号:
8467688 - 财政年份:2009
- 资助金额:
$ 50.35万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 50.35万 - 项目类别:
Continuing Grant














{{item.name}}会员




