Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
基本信息
- 批准号:10593946
- 负责人:
- 金额:$ 48.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAreaArtificial IntelligenceBedsCancer PatientClinicalClinical TreatmentCommunicationComplexConceptionsConsultationsCuriositiesDataDeteriorationDoseEnvironmentFailureGenerationsHead and Neck CancerHealthcareHumanImageImmunotherapyIndividualityIntelligenceLearningMedicalMedical centerMedicineModalityNatureOperative Surgical ProceduresOrganPatient CarePatientsPhysiciansPlayProceduresProcessPsychological reinforcementRadiationRadiation therapyRiskRoleSiteSystemSystems DevelopmentTechniquesTechnologyTestingTimeTreatment outcomeValidationVisionWorkarmcancer radiation therapycancer therapychemotherapydeep learning modeldeep reinforcement learningdesignexperiencehead and neck cancer patientindividual patientindividualized medicineinnovationnegative affectoptimal treatmentspopulation basedpreferencesatisfactionskillssuccesssupervised learningtreatment planningtreatment strategytumorvalidation studies
项目摘要
PROJECT SUMMARY
About 2/3 of cancer patients in US receive radiation therapy either alone or in conjunction with surgery,
chemotherapy, immunotherapy, etc. Treatment planning, where an optimal treatment strategy is designed for
each individual patient and executed for the whole treatment course, is analogous to the design of a blueprint
for building construction. If a treatment plan is poorly designed, the desired treatment outcome cannot be
achieved, no matter how well other components of radiation therapy are performed. In the current clinical
workflow, a treatment planner works towards a good quality plan in a trial-and-error fashion. Many rounds of
consultation between the planner and physician are needed to reach a plan of physician's satisfaction,
because physician's preference for a particular patient can hardly be quantified and precisely conveyed to the
planner. Consequently, planning time can be up to a week for complex cases and plan quality may be poor
and can vary significantly due to varying levels of physician and planner's skills and physician-planner
cooperation, etc., which substantially deteriorates treatment outcomes. For example, head and neck (H&N)
cancer patients treated with suboptimal plans present 20% lower 2-year overall survival and 24% higher 2-year
local-regional failure. Prolonged overall treatment process due to treatment planning reduces local-regional
control rate by 12–14% per week. Furthermore, as patient's anatomy can rapidly change within the planning
time, the optimally designed plan becomes inappropriate for the changed anatomy. Recently, artificial
intelligence (AI) has made colossal advancements. We believe that AI technologies have a great potential to
revolutionize treatment planning. Treatment planning consists of two major aspects: commonality and
individuality. By exploiting the commonality through deep supervised learning, we can develop a treatment plan
as good as those for previously treated similar patients. The individuality can be actualized by learning
physician's special considerations for a particular patient using deep reinforcement learning. Our preliminary
studies have demonstrated feasibility of these ideas. We hypothesize that an AI-based intelligent treatment
planning system can consistently produce high-quality treatment plans with extremely high efficiency. This
hypothesis will be tested using H&N cancer patients as a test bed via two aims. Aim 1, System development.
Develop two deep-learning models to realize the proposed treatment planning workflow and incorporate them
into a clinical environment. Aim 2, System validation. Acquire and analyze planning data before and after
system implementation. The innovation of this project is the use and customization of the state-of-the-art AI
techniques to solve a clinically important problem. These technologies would revolutionize treatment planning
process, leading to the efficient generation of consistently high quality plans, irrespective of human skills,
experiences, and communications, etc. Besides the significance demonstrated for the H&N cancer patients,
the system can be easily extended to other tumor sites, yielding more substantial impacts.
项目摘要
美国大约有2/3的癌症患者单独或与手术结合进行放射治疗,
化学疗法,免疫疗法等。治疗计划,在此设计最佳治疗策略
每个患者并在整个治疗过程中执行,类似于蓝图的设计
用于建筑建设。如果设计计划的设计较差,那么所需的治疗结果就不可能是
无论进行放射疗法的其他组成部分如何,都可以实现。在当前的临床中
Workflow是一名治疗策划者,以试验方式进行高质量的计划。许多回合
需要在计划者和实物之间进行咨询,以达到物理学的满意计划,
因为物理学对特定患者的偏爱很难被量化并精确地传达给
计划者。因此,对于复杂案例而言,计划时间最多可能是一周,计划质量可能很差
并且由于身体和计划者的技能和物理分支机的水平变化而有很大差异
合作等,基本决定了治疗结果。例如,头部和颈部(H&N)
接受次优计划治疗的癌症患者的2年总生存率降低了20%,而2年的癌症患者则为24%
地方区域失败。由于治疗计划的延长总体治疗过程可减少局部区域
控制率每周12–14%。此外,由于患者的解剖学可以在计划中迅速改变
时间,最佳设计的计划对于改变的解剖结构是不合适的。最近,人造
情报(AI)取得了巨大的进步。我们认为AI技术具有很大的潜力
革新治疗计划。治疗计划包括两个主要方面:共同性和
个性。通过深入监督学习利用共同点,我们可以制定治疗计划
与先前治疗的类似患者一样好。个性可以通过学习实现
物理学对特定患者的特殊考虑,并使用深度加强学习。我们的初步
研究证明了这些思想的可行性。我们假设基于AI的智能治疗
计划系统可以始终如一地制定高质量的治疗计划。这
假设将通过H&N癌症患者通过两个目标进行测试床检验。目标1,系统开发。
开发两个深度学习模型,以实现拟议的治疗计划工作流程并将其结合起来
进入临床环境。 AIM 2,系统验证。在之前和之后获取和分析计划数据
系统实现。该项目的创新是最先进的AI的使用和定制
解决临床重要问题的技术。这些技术将彻底改变治疗计划
过程,导致有效地产生一贯的高质量计划,无论人类技能如何
经验和通讯等。除了对H&N癌症患者表现出的重要性外,
该系统可以很容易地扩展到其他肿瘤部位,从而产生更大的影响。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A feasibility study on deep learning-based individualized 3D dose distribution prediction.
基于深度学习的个性化3D剂量分布预测的可行性研究。
- DOI:10.1002/mp.15025
- 发表时间:2021-08
- 期刊:
- 影响因子:3.8
- 作者:Ma J;Nguyen D;Bai T;Folkerts M;Jia X;Lu W;Zhou L;Jiang S
- 通讯作者:Jiang S
A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy.
- DOI:10.1088/1361-6560/ac09a2
- 发表时间:2021-06-23
- 期刊:
- 影响因子:3.5
- 作者:Shen C;Chen L;Jia X
- 通讯作者:Jia X
Technical Note: A feasibility study on deep learning-based radiotherapy dose calculation.
- DOI:10.1002/mp.13953
- 发表时间:2020-02
- 期刊:
- 影响因子:3.8
- 作者:Xing Y;Nguyen D;Lu W;Yang M;Jiang S
- 通讯作者:Jiang S
Evaluating machine learning enhanced intelligent-optimization-engine (IOE) performance for ethos head-and-neck (HN) plan generation.
- DOI:10.1002/acm2.13950
- 发表时间:2023-07
- 期刊:
- 影响因子:2.1
- 作者:Visak, Justin;Inam, Enobong;Meng, Boyu;Wang, Siqiu;Parsons, David;Nyugen, Dan;Zhang, Tingliang;Moon, Dominic;Avkshtol, Vladimir;Jiang, Steve;Sher, David;Lin, Mu-Han
- 通讯作者:Lin, Mu-Han
Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy.
- DOI:10.1002/mp.14712
- 发表时间:2021-04
- 期刊:
- 影响因子:3.8
- 作者:Shen C;Chen L;Gonzalez Y;Jia X
- 通讯作者:Jia X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xun Jia其他文献
Xun Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xun Jia', 18)}}的其他基金
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10680056 - 财政年份:2022
- 资助金额:
$ 48.03万 - 项目类别:
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
- 批准号:
10592427 - 财政年份:2022
- 资助金额:
$ 48.03万 - 项目类别:
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
- 批准号:
10391652 - 财政年份:2022
- 资助金额:
$ 48.03万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10610971 - 财政年份:2021
- 资助金额:
$ 48.03万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10406863 - 财政年份:2021
- 资助金额:
$ 48.03万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10363727 - 财政年份:2019
- 资助金额:
$ 48.03万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10190850 - 财政年份:2019
- 资助金额:
$ 48.03万 - 项目类别:
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10895120 - 财政年份:2018
- 资助金额:
$ 48.03万 - 项目类别:
Precise image guidance for liver cancer stereotactic body radiotherapy using element-resolved motion-compensated cone beam CT
使用元素分辨运动补偿锥形束CT精确引导肝癌立体定向放射治疗
- 批准号:
10112840 - 财政年份:2018
- 资助金额:
$ 48.03万 - 项目类别:
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10331746 - 财政年份:2018
- 资助金额:
$ 48.03万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
- 批准号:
10578616 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别: