Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
基本信息
- 批准号:10592427
- 负责人:
- 金额:$ 61.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAgreementAnatomyArtificial IntelligenceAuthorization documentationBig DataBypassCatalogsChestClassificationClinicalCodeCommunitiesComputer softwareDataData SetDetectionDevelopmentDiagnosticDiseaseEffectivenessElementsEnsureEvaluationEvaluation MethodologyFeedbackFutureGenerationsGoalsHeadHumanImageImage AnalysisIndividualIndustrializationInfrastructureInternetLabelLearningMachine LearningMainstreamingMarketingMasksMedicalMedical DeviceMedical ImagingMedicineMethodsModelingNaturePathologicPathway AnalysisPatientsPerformancePlayPopulationPositioning AttributePublishingRegulationResearchResearch PersonnelRetrievalRoleRunningSafetySamplingScienceSemanticsSystemTechniquesTestingTexasTrainingTranslationsUniversitiesValidationVendorWorkX-Ray Computed Tomographyalgorithmic biasauthorityclinical applicationclinical predictorsclinical translationclinically relevantdeep learningdeep neural networkempowermentfederated learningimage processingimage reconstructionimaging modalityimprovedinnovationinterestlearning strategylow dose computed tomographylung cancer screeningnovel strategiespatient privacyprototyperadiomicsreconstructionsimulationtomographytoolvirtualvirtual patientweb site
项目摘要
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
ABSTRACT
Over the past several years, artificial intelligence (AI) and machine learning (ML), especially deep learning (DL),
has been the most prominent direction of tomographic research, commercial development, clinical translation,
and FDA evaluation. Recently, it has become widely recognized that deep neural networks often have
generalizability issues and are vulnerable to adversarial attacks, deliberate or unintentional. This critical
challenge must be addressed to optimize the performance of deep neural networks in medical applications.
In January this year, FDA published an action plan for furthering the oversight for AI/DL-based software as
medical devices (SaMDs). One major action underlined in the plan is “regulatory science methods related to
algorithm bias and robustness”. The significance of ensuring the safety and effectiveness of AI/DL-based
SaMDs cannot be overestimated since AI is expected to play a critical role in the future of medicine. In this
context, the overall goal of this academic-FDA partnership R01 project is to generate diverse training and
challenging testing datasets of low-dose CT (LDCT) scans, prototype a virtual CT workflow, and establish an
evaluation methodology for AI-based imaging products to support FDA marketing authorization. The technical
innovation lies in cutting-edge DL methods empowered by (a) adversarial learning to generate anatomically
and pathologically representative features in the human chest; (b) adversarial attacking to probe the virtual CT
workflow in individual steps and its entirety; and (c) systematic evaluation methods to better characterize and
predict the clinical performance of AI-based imaging products. In contrast to other CT simulation pipelines, our
Adversarially Based CT (ABC) platform relies on adversarial learning to ensure diversity and realism of the
simulated data and images and improve the generalizability of deep networks, and utilizes adversarial samples
to probe the ABC workflow to address the robustness of deep networks.
The overarching hypothesis is that adversarial learning and attacking methods are powerful to deliver high-
quality datasets for AI-based imaging research and performance evaluation. The specific aims are: (1) diverse
patient modeling (SBU), (2) virtual CT scanning (UTSW), (3) deep CT imaging (RPI), (4) virtual workflow
validation (FDA), and (5) ABC system dissemination (RPI-SBU-UTSW-FDA). In this project, generative
adversarial learning will play an instrumental role in generating features of clinical semantics. Also, adversarial
samples will be produced in both sinogram and image domains. In these complementary ways, AI-based
imaging products can be efficiently evaluated for not only accuracy but also generalizability and robustness.
Upon completion, our ABC workflow/platform will be made publicly available and readily extendable to other
imaging modalities and other diseases. This ABC system will be shared through the FDA’s Catalog of
Regulatory Science Tools, and uniquely well positioned to greatly facilitate the development, assessment and
translation of emerging AI-based imaging products.
基于对抗机制的虚拟CT工作流程在医学影像AI评价中的应用
摘要
在过去的几年里,人工智能(AI)和机器学习(ML),特别是深度学习(DL),
一直是断层摄影研究、商业开发、临床翻译、
FDA评估。最近,人们已经广泛认识到,深度神经网络通常具有
普遍性问题,并且容易受到蓄意或无意的对抗性攻击。这一关键
必须解决的挑战是优化深度神经网络在医疗应用中的性能。
今年1月,FDA发布了一项行动计划,进一步监督基于AI/DL的软件,
医疗器械(SaMD)。该计划中强调的一项主要行动是"与以下方面有关的监管科学方法:
算法偏差和鲁棒性"。确保基于AI/DL的安全性和有效性的重要性
SaMD不能被高估,因为人工智能预计将在未来的医学中发挥关键作用。在这
在此背景下,该学术-FDA合作伙伴关系R01项目的总体目标是开展多样化的培训,
挑战低剂量CT(LDCT)扫描的测试数据集,建立虚拟CT工作流程原型,并建立
基于AI的成像产品的评估方法,以支持FDA的上市许可。技术
创新在于尖端的DL方法,这些方法由(a)对抗性学习来生成解剖学上的
和人类胸部中的病理代表性特征;(B)对抗性攻击以探测虚拟CT
(c)系统评价方法,以更好地描述和
预测基于AI的成像产品的临床性能。与其他CT仿真管道相比,我们的
基于对抗的CT(ABC)平台依赖于对抗学习来确保
模拟数据和图像,提高深度网络的泛化能力,并利用对抗性样本
探索ABC工作流程,以解决深度网络的鲁棒性问题。
总体假设是,对抗性学习和攻击方法是强大的,可以提供高-
用于基于AI的成像研究和性能评估的高质量数据集。具体目标是:(1)多样化
患者建模(SBU),(2)虚拟CT扫描(UTSW),(3)深部CT成像(RPI),(4)虚拟工作流程
验证(FDA)和(5)ABC系统传播(RPI-SBU-UTSW-FDA)。在这个项目中,
对抗性学习将在生成临床语义学特征方面发挥重要作用。此外,adversarial
将在正弦图和图像域中产生样本。通过这些互补的方式,基于AI的
成像产品不仅可以有效地评估准确性,还可以有效地评估通用性和鲁棒性。
完成后,我们的ABC工作流程/平台将公开提供,并随时可扩展到其他
成像模式和其他疾病。该ABC系统将通过FDA的
监管科学工具,并具有独特的优势,大大促进了开发,评估和
翻译新兴的基于AI的成像产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xun Jia其他文献
Xun Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xun Jia', 18)}}的其他基金
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10680056 - 财政年份:2022
- 资助金额:
$ 61.56万 - 项目类别:
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
- 批准号:
10391652 - 财政年份:2022
- 资助金额:
$ 61.56万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10610971 - 财政年份:2021
- 资助金额:
$ 61.56万 - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10406863 - 财政年份:2021
- 资助金额:
$ 61.56万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10363727 - 财政年份:2019
- 资助金额:
$ 61.56万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10190850 - 财政年份:2019
- 资助金额:
$ 61.56万 - 项目类别:
Intelligent treatment planning for cancer radiotherapy
癌症放疗智能治疗计划
- 批准号:
10593946 - 财政年份:2019
- 资助金额:
$ 61.56万 - 项目类别:
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10895120 - 财政年份:2018
- 资助金额:
$ 61.56万 - 项目类别:
Precise image guidance for liver cancer stereotactic body radiotherapy using element-resolved motion-compensated cone beam CT
使用元素分辨运动补偿锥形束CT精确引导肝癌立体定向放射治疗
- 批准号:
10112840 - 财政年份:2018
- 资助金额:
$ 61.56万 - 项目类别:
Next generation small animal radiation research platform
下一代小动物辐射研究平台
- 批准号:
10331746 - 财政年份:2018
- 资助金额:
$ 61.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.56万 - 项目类别:
Research Grant