Admin. supplement for equipment to Mechanisms underlying the Rlm1-dependent G1 checkpoint (NIH R15 GM135807)

行政。

基本信息

  • 批准号:
    10598250
  • 负责人:
  • 金额:
    $ 2.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

(from parent grant) As cells divide the different cellular programs of cell division must be coordinated with one another. For example, the duplication of chromosomes, the separation of these duplicated chromosomes, and the division of one cell into two cells must all occur at precise times relative to one another and to other cellular events. To achieve this coordination, there are special times during the cell cycle, termed checkpoints, in which progression of the cell cycle can be paused. At these checkpoints, accurate/ undamaged completion of an earlier program is necessary before a later program will be initiated. Checkpoints work because the cell has specialized machines, made up of enzymes and other proteins, that are activated by damaged or incomplete cellular structures. Once activated these checkpoint machines cause the progression of the cell cycle to halt until the cellular structures are repaired and complete. When checkpoints are defective, cells continue through the cycle accumulating damaged structures and leading to disease states. Indeed, checkpoints are often bypassed in cancer cells, and defective checkpoints lead to higher risk of cancer. We recently proposed a novel checkpoint, here termed the “Rlm1-dependent checkpoint”, that delays passage through the cell cycle under a particular stressful environmental condition. As the name suggests, this checkpoint was revealed by a deletion mutant in the gene encoding the Rlm1 transcription factor. Rlm1 is known to be activated in response to cell-wall stress, so it may be that this checkpoint responds to stress at the cell surface. Interestingly, bypassing the Rlm1 checkpoint, unlike bypassing known checkpoints, leads to cell death in only one of the two products of cell division. Our long-term objective in this project is to characterize the function and mechanism of the Rlm1-dependent checkpoint. Our first specific aim is to characterize the position during the cell cycle at which this checkpoint operates, and the cell cycle regulators and additional cellular components through which it acts. Our second specific aim is to identify the nature of the signal to which this checkpoint responds and the nature of the damage that accumulates when the checkpoint is bypassed. To accomplish these aims we will employ a combination of genetic, cytological, and molecular biological assays. For example, we will grow both normal yeast and mutants defective in the Rlm1 checkpoint under non-stressful conditions and then release them suddenly into the stressful condition. We will then compare the normal and mutant yeast over time for known molecular or cellular events in the cell cycle as well as different types of cellular damage. We will test specific hypotheses regarding the mechanism of this checkpoint by examining mutants known to be defective in particular aspects of cell maintenance and cell cycle control for their role in this checkpoint. Characterization of this new type of checkpoint should reveal important new aspects of cell cycle control and may prove useful in understanding new aspects of disease states.
(来自家长补助) 当细胞分裂时,不同的细胞分裂程序必须相互协调。为了 例如,染色体的重复、这些重复染色体的分离以及 一个细胞分裂成两个细胞必须在相对于彼此和其他细胞的精确时间发生 事件。为了实现这种协调,细胞周期中有一些特殊的时间,称为检查点, 细胞周期的进展可以暂停。在这些检查点,准确/无损地完成 在启动较晚的计划之前,需要先执行较早的计划。检查点之所以起作用是因为 细胞有专门的机器,由酶和其他蛋白质组成,被损坏或损坏时激活 不完整的细胞结构。一旦激活这些检查点机器就会导致细胞的进展 循环停止,直到细胞结构修复并完成。当检查点有缺陷时,细胞 继续这个循环,累积受损的结构并导致疾病状态。的确, 癌细胞中的检查点经常被绕过,而有缺陷的检查点会导致更高的癌症风险。我们 最近提出了一种新颖的检查点,这里称为“Rlm1依赖检查点”,可以延迟通过 在特定的应激环境条件下经历细胞周期。顾名思义,这 检查点是由编码 Rlm1 转录因子的基因中的缺失突变体揭示的。 Rlm1 是 已知会响应细胞壁压力而被激活,因此该检查点可能对压力做出反应 细胞表面。有趣的是,与绕过已知检查点不同,绕过 Rlm1 检查点会导致 仅导致细胞分裂的两种产物之一的细胞死亡。我们在这个项目中的长期目标是 描述 Rlm1 依赖检查点的功能和机制。我们的第一个具体目标是 表征该检查点在细胞周期中运行的位置,以及细胞周期 调节器和其发挥作用的其他细胞成分。我们的第二个具体目标是确定 该检查点响应的信号的性质以及累积损坏的性质 当检查点被绕过时。为了实现这些目标,我们将结合遗传、 细胞学和分子生物学测定。例如,我们将种植正常酵母和突变体 在非压力条件下Rlm1检查点有缺陷,然后突然将它们释放到 紧张的状况。然后,我们将比较正常和突变酵母随时间的已知分子或 细胞周期中的细胞事件以及不同类型的细胞损伤。我们将具体测试 通过检查已知有缺陷的突变体来提出有关该检查点机制的假设 细胞维护和细胞周期控制的特定方面在这个检查点中的作用。 这种新型检查点的表征应该揭示细胞周期控制的重要新方面 并且可能有助于理解疾病状态的新方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAUL M HONIGBERG其他文献

SAUL M HONIGBERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAUL M HONIGBERG', 18)}}的其他基金

Mechanisms underlying cell-fate patterns in yeast communities
酵母群落细胞命运模式的潜在机制
  • 批准号:
    8626605
  • 财政年份:
    2010
  • 资助金额:
    $ 2.8万
  • 项目类别:
Mechanisms underlying cell-fate patterns in yeast communities
酵母群落细胞命运模式的潜在机制
  • 批准号:
    9305292
  • 财政年份:
    2010
  • 资助金额:
    $ 2.8万
  • 项目类别:
Mechanisms underlying pattern formation in S. cerevisiae colonies
酿酒酵母菌落模式形成的机制
  • 批准号:
    8242306
  • 财政年份:
    2010
  • 资助金额:
    $ 2.8万
  • 项目类别:
Mechanisms underlying pattern formation in S. cerevisiae colonies
酿酒酵母菌落模式形成的机制
  • 批准号:
    7981244
  • 财政年份:
    2010
  • 资助金额:
    $ 2.8万
  • 项目类别:
Mechanisms underlying pattern formation in S. cerevisiae colonies
酿酒酵母菌落模式形成的机制
  • 批准号:
    8462760
  • 财政年份:
    2010
  • 资助金额:
    $ 2.8万
  • 项目类别:
Gene Regulatory Codes and Signal/Regulatory Element Interactions in IME2
IME2 中的基因调控代码和信号/调控元件相互作用
  • 批准号:
    7896207
  • 财政年份:
    2009
  • 资助金额:
    $ 2.8万
  • 项目类别:
Gene Regulatory Codes and Signal/Regulatory Element Interactions in IME2
IME2 中的基因调控代码和信号/调控元件相互作用
  • 批准号:
    7254454
  • 财政年份:
    2007
  • 资助金额:
    $ 2.8万
  • 项目类别:
MECHANISM(S) CONTROLLING GROWTH/MEIOSIS SWITCH IN YEAST
酵母中控制生长/减数分裂转换的机制
  • 批准号:
    6417162
  • 财政年份:
    1998
  • 资助金额:
    $ 2.8万
  • 项目类别:
MECHANISM(S) CONTROLLING GROWTH/MEIOSIS SWITCH IN YEAST
酵母中控制生长/减数分裂转换的机制
  • 批准号:
    6386969
  • 财政年份:
    1998
  • 资助金额:
    $ 2.8万
  • 项目类别:
MECHANISM(S) CONTROLLING GROWTH/MEIOSIS SWITCH IN YEAST
酵母中控制生长/减数分裂转换的机制
  • 批准号:
    6180905
  • 财政年份:
    1998
  • 资助金额:
    $ 2.8万
  • 项目类别:

相似国自然基金

展向局部自由流湍流下边界层bypass转捩的二次失稳机理的研究
  • 批准号:
    11202147
  • 批准年份:
    2012
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
边界层中Bypass转捩机理的研究
  • 批准号:
    11102131
  • 批准年份:
    2011
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
  • 批准号:
    23H02991
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of the Effect of Changes in Blood Flow to the Brain Before and After Cardiopulmonary Bypass on Postoperative Delirium
体外循环前后脑血流变化对术后谵妄的影响研究
  • 批准号:
    23K08418
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A novel through-the-scope exchangeable double balloon catheter to guide endoscopic bypass: a practice-changing technology in the management of malignant gastric outlet obstruction
一种新型的通过镜可交换双球囊导管来引导内窥镜旁路:治疗恶性胃出口梗阻的一种改变实践的技术
  • 批准号:
    498860
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Operating Grants
Research and development of a virtual cardiopulmonary bypass/ECMO simulator using MR (Mixed Reality)
利用MR(混合现实)研发虚拟体外循环/ECMO模拟器
  • 批准号:
    23K15535
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated bypass of mitochondrial electron transport chain with artificial and endogenous substrates
NAD(P)H 醌氧化还原酶 1 (NQO1) 介导的人工和内源底物线粒体电子传递链旁路
  • 批准号:
    10789749
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
Sediment transport mechanism on self-lining channel and application to abrasion countermeasures for sediment bypass tunnels
自衬通道输沙机理及在泥沙绕行隧道磨损对策中的应用
  • 批准号:
    23H01511
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Significance of the alteration of enterohepatic circulation in the mechanism of improvement of glucose metabolism after duodenal jejunal bypass
肠肝循环的改变在十二指肠空肠绕道术后糖代谢改善机制中的意义
  • 批准号:
    23K08146
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sex-differences in 5 year survival with percutaneous coronary intervention compared to coronary artery bypass graft surgery in patients with diabetes and multivessel disease
糖尿病和多支血管疾病患者经皮冠状动脉介入治疗与冠状动脉搭桥手术的 5 年生存率存在性别差异
  • 批准号:
    495441
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
The Role of Intraoperative Transesophageal Echocardiography During Isolated Coronary Artery Bypass Graft Surgery
术中经食管超声心动图在离体冠状动脉搭桥手术中的作用
  • 批准号:
    10738059
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
Racial Disparities in Sleep, Circadian Rhythm, and Glucoregulation Among Individuals Post-Coronary Artery Bypass Surgery
冠状动脉搭桥手术后个体在睡眠、昼夜节律和血糖调节方面的种族差异
  • 批准号:
    10750187
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了