Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
基本信息
- 批准号:10594344
- 负责人:
- 金额:$ 33.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AwardBrainCharacteristicsClinicalCognitiveCommunitiesComputer ModelsComputer softwareDataData SetData StoreDevelopmentDiseaseDoctor of PhilosophyElectroencephalographyEnvironmentFAIR principlesFundingFutureGrantHealthHigh Performance ComputingHourInternetMetadataMethodsModelingNeurophysiology - biologic functionNeurosciencesOntologyParentsPilot ProjectsPublicationsReproducibilityResearchSecureStandardizationTimeWorkloadbaseblockchainbrain cellcomputerized data processingcomputerized toolscomputing resourcesexperiencelarge datasetsnervous system disorderopen dataoperationsimulationsuccesssupercomputertool
项目摘要
Summary
The objective of this supplement proposal is to collect standardize provenance metadata of the Neuroscience
Gateway (NSG) datasets and computational tools using a provenance ontology, which will enable them to be
AI/ML ready. The NSG project began in 2012 to catalyze progress in neuroscience by reducing technical and
administrative barriers that neuroscientists faced in large scale modeling projects which require high
performance computing resources. NSG's success is reflected in the facts that its base of registered users
(currently 1370) has grown continually since it started operation, every year the NSG team successfully
acquires over 14,000,000 core hours of time on NSF funded supercomputers and it has contributed to large
number of publications and Ph.D./MS thesis. Starting in 2017 experimentalists and cognitive neuroscientists
began to use NSG for data processing/analysis and ML. NSG now provides over sixteen tools on
supercomputers for simulation, data processing and ML. As promised in the parent U24 grant awarded in
2019, we have enhanced NSG by adding new features making it an efficient environment for development and
dissemination of lab-developed neuroscience tools to the broader neuroscience community. It should be noted
that currently there is no provision to record metadata or provenance information for any of the NSG tools and
the data sets they produce. Currently the large number of NSG computational tools and the datasets lack
standardized annotations that is needed to enable them to be integrated into ML workflows with support for
explainable AI and reproducibility. In this supplement, we will first integrate a W3C PROV specification-based
provenance ontology in NSG through a provenance interface to allow users to record provenance metadata
using ontology classes. We will demonstrate the use of provenance ontology through a pilot project that will
use a neuroscience software called the NeuroIntegrative Connectivity (NIC) tool that analyzes EEG data to
compute functional brain networks in neurological disorders. The NIC tool has provenance metadata
characteristics built into it, and will be the first NSG tool to carry the metadata provenance information from the
beginning to the end of a dataset’s lifecycle. The ontology-based standardized description of both the NIC tool
and data will enable NSG to make them findable, accessible, interoperable, and reusable. In this context,
providing a secure method to efficiently share and verify the data and metadata is necessary for reuse of
scientific data. To achieve this, we will utilize the NSF-funded Open Science Chain (OSC) project which
provides a blockchain based solution to maintain the integrity and provenance for datasets and its metadata
and provides a way to perform independent verification of the data stored in the blockchain. The experience
gained via integrating a provenance ontology, the NIC tool and the OSC within the framework of NSG, will
allow us in the future to integrate metadata provenance information of other NSG tools and make the NSG
comprehensively more suitable for AI/ML workloads.
总结
本补充提案的目的是收集神经科学的标准化出处元数据
网关(NSG)数据集和计算工具,使用出处本体,这将使他们能够
AI/ML就绪。NSG项目始于2012年,旨在通过减少技术和科学的发展来促进神经科学的进步。
神经科学家在大规模建模项目中面临的行政障碍,
性能计算资源。NSG的成功反映在其注册用户基础
(目前为1370)自开始运营以来不断发展,每年NSG团队都成功地
在NSF资助的超级计算机上获得了超过14,000,000个核心小时的时间,并为大型
出版物数量和博士学位/ MS论文从2017年开始,实验学家和认知神经科学家
开始使用NSG进行数据处理/分析和ML。NSG现在提供超过16种工具,
用于仿真、数据处理和ML的超级计算机。正如在2009年授予的母公司U24赠款中所承诺的那样,
2019年,我们通过添加新功能增强了NSG,使其成为高效的开发环境,
将实验室开发的神经科学工具传播到更广泛的神经科学界。应当注意
目前没有规定记录任何核供应国集团工具的元数据或来源信息,
他们生产的数据。目前,NSG的大量计算工具和数据集缺乏
标准化注释,使其能够集成到ML工作流中,并支持
可解释的AI和再现性。在本补充中,我们将首先集成基于W3C PROV规范的
通过出处接口将出处本体存储在NSG中,以允许用户记录出处元数据
使用本体类。我们将通过一个试点项目演示出处本体的使用,
使用一种名为神经整合连接(NIC)工具的神经科学软件分析EEG数据,
在神经系统疾病中计算功能性大脑网络。NIC工具具有来源元数据
它将是第一个NSG工具,从数据库中携带元数据来源信息。
从数据集生命周期的开始到结束。基于本体的NIC工具的规范化描述
数据将使NSG能够使它们可查找、可访问、可互操作和可重复使用。在这一背景下,
提供一种安全的方法来有效地共享和验证数据和元数据,
科学数据。为此,我们将利用NSF资助的开放科学链(OSC)项目,
提供基于区块链的解决方案,以维护数据集及其元数据的完整性和来源
并提供了一种对存储在区块链中的数据进行独立验证的方法。的经验
通过在NSG框架内集成起源本体、NIC工具和OSC,
允许我们在未来集成其他NSG工具的元数据来源信息,
更适合AI/ML工作负载。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amitava Majumdar其他文献
Amitava Majumdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amitava Majumdar', 18)}}的其他基金
Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
- 批准号:
10442682 - 财政年份:2019
- 资助金额:
$ 33.28万 - 项目类别:
Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
- 批准号:
10650338 - 财政年份:2019
- 资助金额:
$ 33.28万 - 项目类别:
Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
- 批准号:
10019388 - 财政年份:2019
- 资助金额:
$ 33.28万 - 项目类别:
Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
- 批准号:
10186744 - 财政年份:2019
- 资助金额:
$ 33.28万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of molecular and neural basis of the brain correlated with behavioral characteristics of cockroaches
与蟑螂行为特征相关的大脑分子和神经基础分析
- 批准号:
23K18148 - 财政年份:2023
- 资助金额:
$ 33.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Rehabilitation based on functional characteristics of motor-related brain regions involved in generating gait rhythm
基于参与产生步态节律的运动相关大脑区域的功能特征的康复
- 批准号:
23K16622 - 财政年份:2023
- 资助金额:
$ 33.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Comparative Analysis of Cerebral and Peripheral Circulatory Function, Exercise Pressor Response, and Brain Anatomical Characteristics Between Japanese and Caucasian Americans
日本人和白人美国人的大脑和外周循环功能、运动加压反应和大脑解剖特征的比较分析
- 批准号:
23KK0179 - 财政年份:2023
- 资助金额:
$ 33.28万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Brain volume and brain white matter analysis to reveal reading ability and visual-cognitive characteristics of children with dyslexia
脑容量和脑白质分析揭示阅读障碍儿童的阅读能力和视觉认知特征
- 批准号:
21KK0240 - 财政年份:2022
- 资助金额:
$ 33.28万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Placenta-to-brain communication-related transport characteristics of placental trophoblast-derived exosomes in the blood-brain barrier endothelial and parenchymal cells
血脑屏障内皮细胞和实质细胞中胎盘滋养层来源的外泌体的胎盘与大脑通讯相关的运输特征
- 批准号:
21K15314 - 财政年份:2021
- 资助金额:
$ 33.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Content-based image retrieval of 3D brain MRI images focusing on disease characteristics for diagnostic support
基于内容的 3D 脑部 MRI 图像检索,重点关注疾病特征以提供诊断支持
- 批准号:
21K12656 - 财政年份:2021
- 资助金额:
$ 33.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying and Targeting Shared Molecular Characteristics of Breast- and Melanoma-Derived Brain Metastases
识别和靶向乳腺和黑色素瘤脑转移瘤的共同分子特征
- 批准号:
10831246 - 财政年份:2021
- 资助金额:
$ 33.28万 - 项目类别:
Elucidation of clinical characteristics, brain images and immunological pathophysiology in childhood NMDAR encephalitis
阐明儿童 NMDAR 脑炎的临床特征、脑图像和免疫病理生理学
- 批准号:
21K07788 - 财政年份:2021
- 资助金额:
$ 33.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characteristics of brain functional shift accompanied with brain tumor
脑肿瘤伴脑功能转变的特点
- 批准号:
20K21649 - 财政年份:2020
- 资助金额:
$ 33.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A multimodal neuroimaging approach to identifying subgroups of children with neurodevelopmental disorders with shared brain characteristics
一种多模式神经影像学方法,用于识别具有共同大脑特征的神经发育障碍儿童亚组
- 批准号:
439751 - 财政年份:2020
- 资助金额:
$ 33.28万 - 项目类别:
Studentship Programs














{{item.name}}会员




