Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.

神经科学网关能够传播计算和数据处理工具和软件。

基本信息

  • 批准号:
    10442682
  • 负责人:
  • 金额:
    $ 36.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-20 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Abstract (Proposal title: Neuroscience Gateway to Enable Dissemination of Computational and Data Processing Tools and Software.): This proposal presents a focused plan for expanding the capabilities of the Neuroscience Gateway (NSG) to meet the evolving needs of neuroscientists engaged in computationally intensive research. The NSG project began in 2012 with support from the NSF. Its initial goal was to catalyze progress in computational neuroscience by reducing technical and administrative barriers that neuroscientists faced in large scale modeling projects involving tools and software which require and run efficiently on high performance computing (HPC) resources. NSG's success is reflected in the facts that (1) its base of registered users has grown continually since it started operation in early 2013 (more than 800 at present), (2) every year the NSG team successfully acquires ever larger allocations of supercomputer time (recently more than 10,000,000 core hours/year) on academic HPC resources of the Extreme Science and Engineering Discovery (XSEDE – that coordinates NSF supercomputer centers) program by writing proposals that go through an extremely competitive peer review process, and (3) it has contributed to large number of publications and Ph.D thesis. In recent years experimentalists, cognitive neuroscientists and others have begun using NSG for brain image data processing, data analysis and machine learning. NSG now provides over 20 tools on HPC resources for modeling, simulation and data processing. While NSG is currently well used by the neuroscience community, there is increasing interest from that community in applying it to a wider range of tasks than originally conceived. For example, some are trying to use it as an environment for dissemination of lab-developed tools, even though NSG is not suitable for that use because of delays from the batch queue wait times of production HPC resources, and lack of features and resources for an interactive, graphical, and collaborative environment needed for tool development, benchmarking and testing. “Forced” use of NSG for development and dissemination makes NSG's operators a “person-in-the-middle” bottleneck in the process. Another issue is that newly developed data processing tools require high throughput computing (HTC) usage mode, as opposed to HPC, but currently NSG does not provide access to compute resources suitable for HTC. Additionally, data processing workflows require features such as the ability to transfer large size data, process shared data, and visualize output results, which are not currently available on NSG. The work we propose will enhance NSG by adding the features that it needs to be a suitable and efficient dissemination environment for lab-developed neuroscience tools to the broader neuroscience community. This will allow tool developers to disseminate their lab-developed tools on NSG taking advantage of the current functionalities that are being well served on NSG for the last six years such as a growing user base, an easy user interface, an open environment, the ability to access and run jobs on powerful compute resources, availability of free supercomputer time, a well-established training and outreach program, and a functioning user support system. All of these well-functioning features of NSG will make it an ideal environment for dissemination and use of lab-developed computational and data processing neuroscience tools.
摘要(提案标题:神经科学网关,使计算和数据处理工具和 软件):该提案提出了一项重点计划,旨在扩大神经科学网关(NSG)的能力, 满足从事计算密集型研究的神经科学家不断发展的需求。NSG项目始于2012年 在NSF的支持下。其最初的目标是通过减少技术上的困难来促进计算神经科学的进步。 以及神经科学家在涉及工具和软件的大规模建模项目中面临的管理障碍, 需要在高性能计算(HPC)资源上高效运行。NSG的成功体现在以下事实:(1) 自2013年初开始运营以来,其注册用户群不断增长(目前超过800人),(2) 每年,核供应国集团的研究小组都能成功地获得越来越多的超级计算机时间分配(最近超过 10,000,000核心小时/年)的学术HPC资源的极限科学和工程发现(XSEDE - 协调国家科学基金会超级计算机中心)的计划,通过编写提案,通过一个极具竞争力的同行 评审过程,(3)它促成了大量的出版物和博士论文。近年来,实验者, 认知神经科学家和其他人已经开始使用NSG进行大脑图像数据处理,数据分析和机器学习。 学习NSG现在提供20多种HPC资源工具,用于建模、仿真和数据处理。虽然NSG 目前神经科学界广泛使用,该社区越来越有兴趣将其应用于 比最初设想的任务范围更广。例如,有些人试图利用它作为传播环境 的实验室开发的工具,即使NSG是不适合这种用途,因为从批处理队列等待时间的延迟 生产HPC资源,缺乏交互式、图形化和协作环境的功能和资源 工具开发、基准测试和测试所需要的。“强迫”使用NSG进行开发和传播, NSG的运营商在这个过程中遇到了“中间人”的瓶颈。另一个问题是,新开发的数据处理 工具需要高吞吐量计算(HTC)使用模式,而不是HPC,但目前NSG不提供访问 以计算适合HTC的资源。此外,数据处理工作流需要诸如以下功能的功能: 传输大型数据、处理共享数据并可视化输出结果,这些功能目前在NSG上不可用。的 我们提出的工作将通过增加NSG所需的功能来增强NSG,使其成为一种适当和有效的传播方式 实验室开发的神经科学工具的环境,以更广泛的神经科学界。这将允许工具开发人员 利用现有的功能,在核供应国集团上传播他们的实验室开发的工具 在过去的六年里,NSG的用户群不断增长,用户界面简单,环境开放,能够访问 并在强大的计算资源上运行作业,免费的超级计算机时间,完善的培训和 外展计划,以及一个功能正常的用户支持系统。NSG的所有这些功能都将使其成为一个 传播和使用实验室开发的计算和数据处理神经科学工具的理想环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amitava Majumdar其他文献

Amitava Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amitava Majumdar', 18)}}的其他基金

Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
  • 批准号:
    10650338
  • 财政年份:
    2019
  • 资助金额:
    $ 36.89万
  • 项目类别:
Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
  • 批准号:
    10019388
  • 财政年份:
    2019
  • 资助金额:
    $ 36.89万
  • 项目类别:
Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
  • 批准号:
    10186744
  • 财政年份:
    2019
  • 资助金额:
    $ 36.89万
  • 项目类别:
Neuroscience Gateway to Enable Dissemination of Computational And Data Processing Tools And Software.
神经科学网关能够传播计算和数据处理工具和软件。
  • 批准号:
    10594344
  • 财政年份:
    2019
  • 资助金额:
    $ 36.89万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Studentship
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了