Targeted transcranial direct current stimulation combined with bimanual training for children with cerebral palsy
靶向经颅直流电刺激联合双手训练治疗脑瘫患儿
基本信息
- 批准号:10594264
- 负责人:
- 金额:$ 35.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-26 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultArchitectureCerebral PalsyChildClinical ResearchClinical TrialsClinical assessmentsDataData SetDatabasesDevelopmentEnrollmentEthicsFutureGoalsGoldHandHand functionsImageInterventionMachine LearningMeasuresMethodsModelingMotionMovementMovement DisordersParticipantPatternPerformancePopulationPublishingResearchResearch PersonnelSoftware FrameworkSpastic Cerebral PalsySystemTestingTrainingUnderrepresented PopulationsUnited States National Institutes of HealthUpper ExtremityUpper limb movementbasecostcost effectivedata acquisitiondata repositorydeep learningdeep learning modelimprovedkinematicsparent grantrepositorytime usetooltransfer learning
项目摘要
PROJECT SUMMARY
The overall objective for the parent grant is to determine how to optimally target transcranial direct current
stimulation (tDCS) to enhance the efficacy of upper extremity (UE) training in children with unilateral cerebral
palsy (UCP). A key tool to determine whether this intervention leads to improves UE function is the use of
clinical assessments. However, even the best assessments do not have the capacity to identify kinematic
features of a child’s hand movement. Most assessments use time to complete a task as a corollary of hand
function or subjective ratings of movement quality and function. By not capturing movement patterns using
kinematics, there is a vital loss of information that could help optimize interventions. Existing methods of UE
kinematics acquisition are not easily accessible because of their size, cost, and operational complexities.
In this supplement proposal, we aim to use Deep Learning (DL) pose estimation models along with 3D
depth sensing cameras to develop a cost effective, easy to use, and compact Deep Learning based
markerless kinematic data acquisition (DL-KDA) system that can be applied to children with UCP. In order to
achieve this overall goal, we must establish the accuracy and validity of the kinematic data obtained from the
system. We will begin by developing a modular software framework for building and testing DL-KDA systems
against a very precise marker-based motion capture gold standard (VICON). We will study the effects of 3D
camera and DL parameters/architecture on the accuracy of the resulting kinematic data from healthy adult
participants during BBT. Kinematic data from both, the DL-KDA and gold standard systems along with the
respective DL-KDA parameter data will be transformed into an AI/ML ready HDF5 file. This will be published in
public DL and NIH data repositories to encourage further development of ML applications using kinematic data.
Once a validated and optimal DL-KDA configuration is identified, we will investigate this system’s suitability for
applications to children with UCP. Since existing training datasets used for most DL pose estimation models
are not inclusive of children and/or adults with movement disorders, potential ethical and scientific biases may
arise if applied to an underrepresented group. To address this, we will use our large database of UCP
assessment videos over the last 9 years to generate ~12,000 pose images of children with UCP. The Images
will be transformed into ML/AI ready HDF5 datasets and published in public DL and NIH repositories. These
datasets will be available for other researchers to consider when using or building DL pose estimation models
for applications in UCP clinical research. We will use this dataset to perform transfer learning and retrain the
optimal DL model previously identified. The performance of the retrained DL model will be statistically
compared to the original DL model to verify if bias was indeed present. Finally, we will apply the optimal DL-
KDA using the retrained model to ~20 children with UCP during the BBT. Validated kinematics for the UCP
population, as well, will be uploaded to public DL and NIH repositories for use in future UCP research.
项目概要
母基金的总体目标是确定如何最佳地瞄准经颅直流电
刺激(tDCS)增强单侧脑瘫儿童上肢(UE)训练的效果
麻痹(UCP)。确定这种干预是否会改善 UE 功能的关键工具是使用
临床评估。然而,即使是最好的评估也无法识别运动学
孩子手部动作的特点。大多数评估都会使用时间来完成任务,作为手工的必然结果
功能或运动质量和功能的主观评价。通过不使用捕捉运动模式
运动学方面,有助于优化干预措施的信息严重丢失。 UE现有方法
由于其规模、成本和操作复杂性,运动学采集并不容易实现。
在此补充提案中,我们的目标是使用深度学习 (DL) 姿态估计模型以及 3D
深度传感相机,用于开发具有成本效益、易于使用且紧凑的基于深度学习的相机
可应用于UCP儿童的无标记运动数据采集(DL-KDA)系统。为了
为了实现这一总体目标,我们必须建立从运动学数据获得的准确性和有效性
系统。我们将首先开发一个用于构建和测试 DL-KDA 系统的模块化软件框架
反对非常精确的基于标记的动作捕捉黄金标准(VICON)。我们将研究3D的效果
相机和深度学习参数/架构对健康成人运动学数据准确性的影响
BBT 期间的参与者。来自 DL-KDA 和金标准系统以及
相应的 DL-KDA 参数数据将转换为 AI/ML 就绪的 HDF5 文件。这将发表在
公共 DL 和 NIH 数据存储库,鼓励使用运动学数据进一步开发 ML 应用程序。
一旦确定了经过验证的最佳 DL-KDA 配置,我们将调查该系统的适用性
对 UCP 儿童的应用。由于现有的训练数据集用于大多数深度学习姿态估计模型
不包括患有运动障碍的儿童和/或成人,潜在的伦理和科学偏见可能
如果应用于代表性不足的群体,就会出现这种情况。为了解决这个问题,我们将使用我们的大型 UCP 数据库
过去 9 年的评估视频生成了约 12,000 张 UCP 儿童的姿势图像。图像
将转换为 ML/AI 就绪的 HDF5 数据集,并在公共 DL 和 NIH 存储库中发布。这些
其他研究人员在使用或构建 DL 姿态估计模型时可以考虑使用数据集
用于 UCP 临床研究的应用。我们将使用该数据集来执行迁移学习并重新训练
先前确定的最佳深度学习模型。重新训练的深度学习模型的性能将被统计
与原始深度学习模型进行比较,以验证偏差是否确实存在。最后,我们将应用最优的 DL-
KDA 在 BBT 期间对约 20 名 UCP 儿童使用重新训练的模型。经过验证的 UCP 运动学
人口也将上传到公共 DL 和 NIH 存储库,以用于未来的 UCP 研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen Margaret Friel其他文献
Kathleen Margaret Friel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen Margaret Friel', 18)}}的其他基金
Impact of sensory impairments on movement in children with cerebral palsy
感觉障碍对脑瘫儿童运动的影响
- 批准号:
10417072 - 财政年份:2018
- 资助金额:
$ 35.64万 - 项目类别:
Targeted transcranial direct current stimulation combined with bimanual training for children with cerebral palsy
靶向经颅直流电刺激联合双手训练治疗脑瘫患儿
- 批准号:
9917446 - 财政年份:2014
- 资助金额:
$ 35.64万 - 项目类别:
Targeted transcranial direct current stimulation combined with bimanual training for children with cerebral palsy
靶向经颅直流电刺激联合双手训练治疗脑瘫患儿
- 批准号:
10460461 - 财政年份:2014
- 资助金额:
$ 35.64万 - 项目类别:
Targeted transcranial direct current stimulation combined with bimanual training for children with cerebral palsy
靶向经颅直流电刺激联合双手训练治疗脑瘫患儿
- 批准号:
10200863 - 财政年份:2014
- 资助金额:
$ 35.64万 - 项目类别:
IMPACT OF MOTOR CONNECTIVITY ON EFFICACY OF HAND THERAPY IN CONGENITAL HEMIPLEGIA
运动连接对先天性偏瘫手部治疗效果的影响
- 批准号:
8653096 - 财政年份:2013
- 资助金额:
$ 35.64万 - 项目类别:
IMPACT OF MOTOR CONNECTIVITY ON EFFICACY OF HAND THERAPY IN CONGENITAL HEMIPLEGIA
运动连接对先天性偏瘫手部治疗效果的影响
- 批准号:
8646212 - 财政年份:2013
- 资助金额:
$ 35.64万 - 项目类别:
Mechanisms of cerebral palsy recovery induced by balancing motor cortex activity
平衡运动皮层活动诱导脑瘫康复的机制
- 批准号:
8133104 - 财政年份:2008
- 资助金额:
$ 35.64万 - 项目类别:
Mechanisms of cerebral palsy recovery induced by balancing motor cortex activity
平衡运动皮层活动诱导脑瘫康复的机制
- 批准号:
7589377 - 财政年份:2008
- 资助金额:
$ 35.64万 - 项目类别:
Mechanisms of cerebral palsy recovery induced by balancing motor cortex activity
平衡运动皮层活动诱导脑瘫康复的机制
- 批准号:
8650070 - 财政年份:2008
- 资助金额:
$ 35.64万 - 项目类别:
Mechanisms of cerebral palsy recovery induced by balancing motor cortex activity
平衡运动皮层活动诱导脑瘫康复的机制
- 批准号:
7920931 - 财政年份:2008
- 资助金额:
$ 35.64万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Research Grant