Lowering the burden of medical translation by enabling international healthcare professionals as human editors of machine translations

让国际医疗保健专业人员担任机器翻译的人工编辑,减轻医学翻译的负担

基本信息

  • 批准号:
    10603983
  • 负责人:
  • 金额:
    $ 26.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-26 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Language access solutions in healthcare have focused almost exclusively on the provision of verbal medical interpretation, despite federal and state laws that mandate translation of written information for patients with limited English proficiency (LEP). In recent years, machine translation (MT) has made significant strides, but when it comes to mission-critical technical materials such as healthcare information, the accuracy rate of machine-only translations plummets. Thus, experts recommend MT as a starting point for translating health-related material then supplementing with human quality assurance editing. However, coordinating machine translation with bilingual human editors who have technical medical knowledge is a challenge, especially for less commonly supported languages. Translation vendors currently pass on the associated costs of human assistance to healthcare institutions. The Canopy Translate project will address these deficits by implementing a novel, human-assisted machine translation (HAMT) process. The envisioned workflow management platform will leverage MT engines to expedite the initial rendering of source documents into a target language, then invite bilingual healthcare professionals around the world to apply human editing to the machine-generated translation. The bilingual contributors, who will gain complimentary access to our Medical English eLearning courses as an incentive for their participation, will complete the editing task through gamified learning exercises. For example, a nurse in the Philippines has native fluency in Tagalog and advanced general English but desires to improve his medical English. He can edit a machine-generated Tagalog translation one sentence at a time in the form of a gamified activity. Other contributors will edit the same text for additional quality assurance to form the final, polished version in Tagalog. The system will then organize the final translated content into a reusable document library. In Phase I, we will test the feasibility of this hybrid HAMT approach for medical content. Upon meeting feasibility benchmarks, we will advance to Phase II, during which we will create a minimum viable product, encompassing several novel natural language processing (NLP) algorithms, and evaluate the translation output according to a set of quality benchmarks. If successful, this project will significantly improve the availability, speed, and cost-effectiveness of producing multilingual health content, with potential to reduce health disparities in LEP populations.
项目摘要 医疗保健中的语言访问解决方案几乎完全集中在提供口头医疗服务上。 尽管联邦和州法律要求翻译患者的书面信息, 英语水平有限(LEP)。近年来,机器翻译(MT)取得了长足的进步,但 当涉及到医疗保健信息等关键任务技术材料时, 纯机器翻译的数量直线下降。因此,专家们推荐MT作为翻译的起点 健康相关的材料,然后补充人类质量保证编辑。然而,协调 机器翻译与具有医学技术知识的双语人类编辑是一个挑战, 特别是对于不太常用的支持语言。翻译供应商目前将相关成本转嫁给 对医疗机构的人力援助。Canopy Translate项目将通过以下方式解决这些缺陷: 实现一种新颖的人工辅助机器翻译(HAMT)过程。设想的工作流程 管理平台将利用机器翻译引擎,加快源文件的初始渲染, 目标语言,然后邀请世界各地的双语医疗保健专业人员将人类编辑应用于 机器翻译双语贡献者,谁将获得免费访问我们的医疗 英语eLearning课程作为对他们参与的激励,将通过游戏化完成编辑任务 学习练习。例如,菲律宾的一名护士拥有流利的母语Tagabas, 英语水平,但希望提高自己的英语水平。他可以编辑一个机器生成的标签 以游戏化活动的形式一句一句地翻译。其他贡献者将编辑相同的文本, 额外的质量保证,以形成最终的,抛光版本的Taglets。然后,系统将组织 最终翻译的内容转换为可重复使用的文档库。在第一阶段,我们将测试这种混合动力的可行性 医疗内容的HAMT方法。在达到可行性基准后,我们将进入第二阶段, 我们将创建一个最小可行的产品,包括几个新的自然语言处理, (NLP)算法,并根据一组质量基准评估翻译输出。如果成功, 该项目将显著提高多语言制作的可用性、速度和成本效益 健康内容,有可能减少LEP人群的健康差距。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Riestenberg其他文献

Katherine Riestenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Riestenberg', 18)}}的其他基金

The Language Equity and Accessibility Performance (LEAP) Initiative: Addressing disparities through a paradigm shift in language services operations
语言公平和无障碍绩效 (LEAP) 计划:通过语言服务运营范式转变解决差异
  • 批准号:
    10822738
  • 财政年份:
    2023
  • 资助金额:
    $ 26.58万
  • 项目类别:
Promoting Linguistic and Cultural Identity through Bilingual Children's Stories to Address Nutrition and Health in Indigenous Communities
通过双语儿童故事促进语言和文化认同,解决土著社区的营养和健康问题
  • 批准号:
    10712848
  • 财政年份:
    2022
  • 资助金额:
    $ 26.58万
  • 项目类别:
Promoting Linguistic and Cultural Identity through Bilingual Children's Stories to Address Nutrition and Health in Indigenous Communities
通过双语儿童故事促进语言和文化认同,解决土著社区的营养和健康问题
  • 批准号:
    10484677
  • 财政年份:
    2022
  • 资助金额:
    $ 26.58万
  • 项目类别:
Lowering the burden of medical translation by enabling international healthcare professionals as human editors of machine translations
让国际医疗保健专业人员担任机器翻译的人工编辑,减轻医学翻译的负担
  • 批准号:
    10714622
  • 财政年份:
    2022
  • 资助金额:
    $ 26.58万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 26.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了