Harnessing Coded Ptychography to Deliver AI-powered Evaluation of Unstained Lung Biopsies at the Point-Of-Care
利用编码 Ptychography 在护理点对未染色的肺活检进行人工智能评估
基本信息
- 批准号:10602206
- 负责人:
- 金额:$ 39.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAreaArtificial IntelligenceAspirate substanceBiopsyBiopsy SpecimenBreastCellsCellularityClinicalCodeCollaborationsColorectalConnecticutCytologyDataDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEarly treatmentEvaluationFailureFeasibility StudiesFeedbackFoundationsFreezingGoalsGoldImageIncidenceKnowledgeLabelLesionLightLiteratureLogisticsLungMalignant NeoplasmsMalignant neoplasm of lungMicroscopicMicroscopyModalityOpticsPathologistPathologyPatient CarePatientsPhaseProceduresProstateReportingReproducibilityResearchResolutionResourcesRiskSamplingScheduleServicesSiteSlideSmall Business Innovation Research GrantSpecimenSpeedStaining and LabelingStainsStandardizationStructure of parenchyma of lungSupervisionSurvival RateSystemTelepathologyTestingThickThyroid GlandTimeTissue SampleTrainingUniversitiesValidationWorkalgorithm trainingartificial intelligence algorithmautomated analysisblindclinical applicationcommercializationcomputer aided detectioncostdesigndigital pathologyhigh riskhistiocyteimaging platforminnovationinterestlive streamlung imagingmortalitynovelnovel imaging technologypoint of carepoint-of-care diagnosticsproduct developmentprototyperadiological imagingrobotic microscopyscreeningusabilityvalidation studieswhole slide imaging
项目摘要
Project Summary
This Small Business Innovation Research (SBIR) Phase I project aims to develop an
imaging platform to analyze lung biopsy samples at the point of care. The system will
immediately digitize unstained specimens and utilize computer-assisted detection/diagnostics to
enable quick and efficient evaluations of samples by pathologists. The broad, long-term
objective of this proposed research is to enable real-time diagnostics of pathology samples at
the point-of-care.
Early diagnosis and treatment of lung cancer is essential; the survival rate is low and is
highly dependent on the stage of the disease. Primary diagnoses through microscopic analysis
of biopsies (FNAs) have a 20-40% failure rate due to inadequate specimens. As a result, repeat
biopsies must be performed causing delays in diagnosis and treatment up to 90 days, which is
enough time for cancer to upstage and can reduce survivability by as much as 20%. Rapid-
onsite (ROSE) assessment of the adequacy by a pathologist can guarantee the diagnostic
quality of biopsies but is performed in <10% of lung biopsies due to financial and operational
barriers.
In this project, we propose to overcome the historical barriers to ROSE to standardize
the procedure for lung biopsies. This can be accomplished with two key innovations: (i) the
Application of a novel microscopy modality (coded ptychography microscopy - CPM) for digital
pathology; and (ii) imaging and automated analysis of unstained lung FNAs using Artificial
Intelligence (AI) object detection algorithms. Preliminary work on thyroid FNAs indicates that
CPM can produce super-resolution quantitative phase images (QPIs) with well-visualized
cellularity on unstained slides. A multiwavelength compact prototype will be built and tested to
optimize image quality and speed on unstained lung FNAs. After demonstrating reproducible
high-quality images, object detection algorithms will be trained and validated on unstained QPIs,
and will direct pathologists to areas of interest for quick analysis. Adequacy assessments made
with and without AI object detection assistance will be compared to demonstrate the clinical
validity. The data produced in this feasibility study will fast-track product development and serve
as the foundation for clinical validation. Successful completion of this work is a key step in the
long-term goal of increasing the availability of pathology services worldwide in a concerted effort to
reduce cancer-associated mortality.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Torsten Lyon其他文献
Torsten Lyon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Torsten Lyon', 18)}}的其他基金
Harnessing Coded Ptychography to Deliver AI-powered Evaluation of Unstained Lung Biopsies at the Point-Of-Care
利用编码 Ptychography 在护理点对未染色的肺活检进行人工智能评估
- 批准号:
10740674 - 财政年份:2023
- 资助金额:
$ 39.96万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 39.96万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 39.96万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 39.96万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant