System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
基本信息
- 批准号:10603310
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimalsAreaBehavioralBiologicalBiotechnologyBrainBrain DiseasesBrain regionCalciumCentral Nervous System DiseasesCerebral cortexCollaborationsCommunitiesComplexComputer softwareDevelopmentElectrodesFeasibility StudiesFiberFluorescenceFunctional Magnetic Resonance ImagingHeadHumanImageIndividualKnowledgeLaboratoriesLaser Scanning MicroscopyLasersLegal patentLettersLightMethodsMicroscopeMicroscopyMorphologic artifactsMotionMotorMusNatureNeuraxisNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsNeurosciencesNeurosciences ResearchNew YorkPerformancePhasePhotometryPhysiologic pulsePopulationProcessProductionResearch PersonnelResolutionRodentSamplingScanningSensorySiteSocietiesSpeedStimulusSystemTechnologyTestingTimeUniversitiesValidationVisualWorkbasebrain cellbrain volumecalcium indicatordesignimprovedin vivoin vivo calcium imaginginnovationinterestinventionlensminiaturizeneuropsychiatric disordernew technologynext generationnovelnovel therapeuticsoptical imagingphase 2 designspreventprototyperesearch and developmentspatiotemporaltreatment strategytwo photon microscopytwo-photonusability
项目摘要
Abstract
This project aims to develop and commercialize the Volumetric Calcium Imaging 2-Photon Activity Microscope,
vCAm™, a revolutionary new 2-photon microscope based on a technological breakthrough called Light Beads
Microscopy (LBM) that was recently developed by Dr. Alipasha Vaziri and co-workers (Lab. Neurotechnol.
Biophys., Rockefeller Univ., New York, NY). The game-changing innovation in the vCAm is the ability to perform
unparalleled in vivo calcium imaging of individual neurons at cellular resolution nearly simultaneously in one or
more cytoarchitectonic regions of the mouse cerebral cortex, and nearly simultaneously in 30 imaging planes
each ~16 µm apart (i.e., up to a total depth of 500 µm, encompassing layers I-V) at a full-frame rate of at least
12 Hertz. These capabilities are crucial for ultimately correlating stimuli and/or behavioral states of an animal
discretely, in a context-dependent manner, with the activity of all neurons in the brain of the animal that are
involved in this process, which requires simultaneous recording of the activity of hundreds of thousands of
neurons in a multi-regional and multi-layer manner. However, contemporary 2-photon microscopy suffers from
a fundamental limitation. Neuroscience researchers need to record simultaneous interactions between the
sensory, motor and visual regions of the brain, but it is difficult to capture the activity in such a broad volume of
the brain without sacrificing resolution or speed. The LBM technology pushes the limits of imaging speed to the
physical nature of fluorescence itself by eliminating the “dead time” between sequential laser pulses when no
neuroactivity is recorded and at the same time the need for scanning. With this approach, the only limit to the
rate at which samples can be recorded is the time that it takes the tags to fluoresce, meaning wide volumes of
the brain can be recorded within the same time it would take a conventional two-photon microscope to capture
a much smaller number of brain cells. Other technology, such as miniaturized 2-photon microscopes that can be
carried on the head of freely moving rodents, functional magnetic resonance imaging, inserting electrodes into
the brain, or fiber photometry do not fulfill this need. This project will improve upon the original LBM invention to
create a commercial product for disseminating this important new technology. Based on pilot work performed at
Dr. Vaziri's laboratory, it is clear that the vCAm will make a significant impact on the field of neuroscience
research, including advancing studies focused on alterations in the circuitry of the central nervous system
associated with neurodevelopmental, neuropsychiatric and neurodegenerative disorders. Ultimately, this will
result in an improved basis for developing novel treatment strategies for a wide spectrum of complex brain
diseases. In Phase I we will demonstrate the feasibility of this novel technology by developing prototype hardware
and software; work in Phase II will focus on creating the full functionality of the vCAm for commercial release.
We will perform extensive feasibility studies, product validation and usability studies of the vCAm in close
collaboration with Dr. Vaziri. A competing technology is not commercially available.
摘要
该项目旨在开发和商业化体积钙成像双光子活性显微镜,
vCAm™,一种革命性的新型双光子显微镜,基于称为Light Beads的技术突破
显微镜(LBM),最近开发的博士Alipasha Vaziri和同事(实验室。神经技术
生物物理学,洛克菲勒大学,纽约,NY)。vCAm中改变游戏规则的创新是能够执行
几乎同时在一个或多个细胞中以细胞分辨率对单个神经元进行无与伦比的体内钙成像,
小鼠大脑皮层的更多细胞结构区域,并且几乎同时在30个成像平面中
每个间隔约16 μm(即,总深度达500 µm,包括层I-V),全帧速率至少为
12赫兹这些能力对于最终关联动物的刺激和/或行为状态至关重要
离散地,以上下文依赖的方式,与动物大脑中所有神经元的活动相关联,
参与这一过程,这需要同时记录数十万人的活动,
神经元以多区域和多层次的方式。然而,当代的双光子显微镜遭受
一个基本的限制。神经科学研究人员需要记录大脑中神经元之间的同时相互作用。
大脑的感觉,运动和视觉区域,但很难在如此广泛的体积中捕捉活动。
在不牺牲分辨率或速度的情况下控制大脑。LBM技术将成像速度的极限推到了
通过消除连续激光脉冲之间的“死时间”,
记录神经活动,同时需要扫描。通过这种方法,
可以记录样品的速率是标签发荧光所需的时间,这意味着大量的
大脑可以在同一时间内被记录下来,
脑细胞数量少得多。其他技术,如微型双光子显微镜,可以
携带在自由活动的啮齿动物的头上,功能性磁共振成像,将电极插入
大脑或纤维光度测定不能满足这种需要。该项目将改进原始LBM发明,
创造一种商业产品来传播这一重要的新技术。根据在下列地点进行的试点工作:
博士Vaziri的实验室,很明显,vCAm将对神经科学领域产生重大影响
研究,包括推进集中在中枢神经系统电路改变的研究
与神经发育、神经精神和神经退行性疾病相关。最终,这将
为开发用于广泛复杂脑疾病的新型治疗策略奠定了更好的基础。
疾病在第一阶段,我们将通过开发原型硬件来证明这项新技术的可行性
第二阶段的工作重点是为商业版本创建vCAm的全部功能。
我们将进行广泛的可行性研究,产品验证和vCAm的可用性研究,
与Vaziri博士合作。竞争性技术还没有商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACOB R GLASER其他文献
JACOB R GLASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACOB R GLASER', 18)}}的其他基金
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10755027 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
- 批准号:
10258638 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)