AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
基本信息
- 批准号:10258638
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-09 至 2022-07-08
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAddressAgarAgingAlzheimer&aposs DiseaseAnimal BehaviorAnimal ModelAppearanceArtificial IntelligenceBehaviorBehavioralBehavioral ResearchBiological AssayBiotechnologyBrainBrain DiseasesCaenorhabditis elegansClassificationCollaborationsComplexComputer softwareDataDevelopmentDiseaseDopamineEukaryotaFeasibility StudiesGlutamatesGoalsHumanImageIndividualLaboratoriesLegal patentLightingLocomotionLongevityLongitudinal StudiesMarket ResearchMassachusettsMeasuresMicroscopeMolecularMotionMusNamesNational Institute of Mental HealthNematodaNeurodegenerative DisordersNeurodevelopmental DisorderNeurosciencesNeurotransmittersPathologicPharmacologic SubstancePhasePopulation AnalysisPreparationPsyche structureRattusResearchResearch DesignResearch PersonnelRodentSchizophreniaSchoolsSerotoninSpeedStrategic PlanningSystemTechnologyTestingTimeToxicologyTraumatic Brain InjuryValidationVisual FieldsWorkanalytical methodautism spectrum disorderbasebehavioral studyconvolutional neural networkdesigndigitaldrug discoveryfightingfree behaviorgamma-Aminobutyric Acidhigh throughput screeninginnovationintelligent algorithmlongitudinal analysisneural network architectureneurodevelopmentneuropsychiatric disorderneurotransmitter releasenext generationnovelnovel therapeuticspreventprototypereceptorsocialusability
项目摘要
Abstract
This project aims to develop WormInvestigator™, a novel, highly innovative system for performing automated,
high-throughput and longitudinal studies of the behavior of C. elegans worms freely moving and socially
interacting on agar plates (hereafter: "freely moving worms") across multiple time points over extended times
(e.g., multiple days) with repeated measures designs. Work in Phase I will focus on demonstrating feasibility of
our novel, patent pending, WormRecognizer™ technology – the ability to perform automatic, image-based
identification of individual C. elegans worms within a group of freely moving worms ("digital tagging of freely
moving worms"). Work in Phase II will focus on creating the full functionality of WormInvestigator for the
commercial release. The innovation inherent in WormRecognizer will serve as the basis for enabling a game-
changing innovation in the field – the ability to perform high throughput longitudinal, repeated measures design
analyses of locomotion and other behavior of freely moving C. elegans worms from discrete, non-continuous
video sequences. Compared to study designs that have independent groups repeated measures designs offer
more statistical power and the possibility to track an effect over time. Specifically, repeated measures designs
for analyzing locomotion and other behavior of freely moving worms will allow researchers to definitively assess
the likelihood that a particular behavior is associated with a prior behavior, which is impossible without repeated
measures designs or impractical continuous imaging and tracking under constant illumination. WormRecognizer
will leverage the Deep Convolutional Neural Network (CNN) architecture to perform automatic identification of
the tracks of the same worm in videos of groups of freely moving worms recorded at different time points;
encouraging pilot data were generated during preparation of this application. C. elegans is increasingly used as
a model organism in research focusing on brain mechanisms underlying complex behaviors and pathological
alterations thereof, including research into neurodevelopment, Alzheimer's disease, autism, schizophrenia and
traumatic brain injury. Thus, WormInvestigator will enable significant advancements in various mental
neuroscience applications that use C. elegans as a model organism. Specifically, the fact that C. elegans express
many of the neurotransmitters and associated receptors that are found in higher eukaryotes, including humans,
makes C. elegans highly attractive for the (high throughput) screening of next generation therapeutics for mental
diseases such as Alzheimer's disease, as well as for disorders that rely on neurotransmitter release modulation
such as next generation treatments for schizophrenia. We will perform extensive feasibility studies, product
validation and usability studies of WormInvestigator in close collaboration with expert neuroscientists. Market
research performed during preparation of this application indicated that WormInvestigator will expand the use of
C. elegans as a model organism to many laboratories that do not currently use them. A competing technology is
not available. We anticipate the global market size for WormInvestigator to be more than 300 systems.
摘要
该项目旨在开发WormInvestigator™,这是一种新颖的,高度创新的系统,用于执行自动化,
高通量和纵向研究C.秀丽蠕虫自由移动和社会性
在琼脂平板上相互作用(以下称为“自由移动的蠕虫”)
(e.g.,多天)与重复测量设计。第一阶段的工作将侧重于证明以下方面的可行性:
我们正在申请专利的新型WormRecognizer™技术-能够执行自动的、基于图像的
个体识别C.在一组自由移动的蠕虫中的秀丽线虫蠕虫(“自由移动的线虫的数字标记”)
移动蠕虫”)。第二阶段的工作将集中在创建WormInvestigator的完整功能,
商业释放WormRecognizer固有的创新将成为实现游戏的基础-
不断变化的创新领域-执行高通量纵向、重复测量设计的能力
分析自由活动的C.从离散的、非连续的
视频序列。与具有独立组的研究设计相比,重复测量设计提供了
更强的统计能力和追踪长期效应的可能性。具体而言,重复测量设计
用于分析自由移动蠕虫的运动和其他行为将使研究人员能够明确评估
特定行为与先前行为相关联的可能性,不重复就不可能
测量设计或在恒定照明下不切实际的连续成像和跟踪。蠕虫识别器
将利用深度卷积神经网络(CNN)架构来执行自动识别
在不同时间点记录的自由移动的蠕虫群的视频中的同一蠕虫的轨迹;
在准备这一申请的过程中,产生了令人鼓舞的试验数据。C.越来越多地被用作
一种模式生物,研究重点是复杂行为和病理的大脑机制。
包括对神经发育、阿尔茨海默病、自闭症、精神分裂症和
创伤性脑损伤因此,WormInvestigator将在各种心理学领域取得重大进展。
神经科学应用程序使用C。elegans作为模式生物。具体来说,事实上,C。埃莱甘斯快报
在高等真核生物,包括人类,
使C. elegans对下一代精神疾病治疗剂的(高通量)筛选非常有吸引力,
阿尔茨海默病等疾病,以及依赖于神经递质释放调节的疾病
比如精神分裂症的下一代治疗方法我们将进行广泛的可行性研究,
WormInvestigator的验证和可用性研究与专家神经科学家密切合作。市场
在准备本申请期间进行的研究表明,WormInvestigator将扩大使用
C.秀丽线虫作为模式生物,许多实验室目前没有使用它们。一项竞争技术是
不可用.我们预计WormInvestigator的全球市场规模将超过300个系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACOB R GLASER其他文献
JACOB R GLASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACOB R GLASER', 18)}}的其他基金
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10755027 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10603310 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant














{{item.name}}会员




