NeuroExM
神经ExM
基本信息
- 批准号:10686269
- 负责人:
- 金额:$ 99.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-02 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgingAntibodiesAxonBenchmarkingBiologicalBiological PreservationBiological SciencesBiotechnologyBrainBrain DiseasesCell physiologyCentral Nervous SystemClassificationCollaborationsCommunitiesComplexComplex AnalysisComputer softwareComputersDataDendritesDendritic SpinesDetectionDevelopmentDiseaseDrug AddictionFeasibility StudiesImageIn SituIndividualInvestigationKnowledgeLabelLightManualsMapsMessenger RNAMicroscopeMicroscopyModelingMolecularMorphologyNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsNeurosciences ResearchPerformancePeripheralPhasePopulationPopulation AnalysisPopulation DistributionsPreparationProcessProductionProteinsProteomeResearch PersonnelResolutionRunningSamplingScientistSocietiesSpatial DistributionSpecimenStainsStructureSubcellular structureSynapsesSystemTechniquesTechnologyTestingThree-Dimensional ImageTimeTissue ExpansionTissuesTranslationsValidationVisualizationWorkage effectcomplex biological systemsdesigndrug developmentdrug discoveryfightingfluorophorehigh dimensionalityimage registrationimprovedinnovationinterestmicroscopic imagingnanoscalenervous system disorderneuronal cell bodyneuropsychiatric disordernew technologynext generationnovelpharmacologicpreventprototypereconstructionresearch and developmentresearch studysoftware developmentterabytetissue processingtranscriptometranslational neurosciencetreatment strategyusability
项目摘要
Abstract
This project describes the development of NeuroExM™, a highly innovative system for performing
comprehensive spatial distribution analysis of populations of messenger RNAs (mRNAs) and proteins in tissue
processed for expansion microscopy (ExM)). The groundbreaking technological advantage of ExM, which was
recently developed by Dr. Edward S. Boyden (Dept. Biol. Engin., Media Lab and Dept. Brain Cognit. Sci., MIT,
Cambridge, MA) and colleagues, is the ability to isotropically expand tissue and increase the size of the biological
structures. This allows nanoscale-resolution, light-microscopic imaging of small objects that are too small to be
resolved without expansion due to the diffraction limit of light. Among other benefits, ExM allows those small
structures to be imaged with a wider range of microscopy techniques. Processing tissue for ExM also allows
repeated hybridization (for investigations of mRNAs) and/or repeated antibody staining (for investigations of
proteins) of the same tissue, combined with repeated microscopic imaging rounds. Each round yields adjacent,
high-magnification, single field-of-view image stacks, consisting of at least one morphology reference channel
showing neuronal sub-cellular structures (somas, axons, dendrites, dendritic spines, synapses) as well as one
or several info channels showing mRNAs and/or proteins. Comprehensive analysis of the spatial distribution of
populations of mRNAs and proteins in neurons in situ requires assembling the image stacks of all performed
rounds into a single, seamless and aligned, three-dimensional (3D) ExM image, which is high-dimensional and
can be several terabytes in size. However, this presents a number of computational challenges with respect to
microscopy image registration, segmentation and analysis. The game-changing innovation in NeuroExM is the
ability to perform all of these tasks without the need to have a computer scientist on staff to run the existing,
individual lab-based software scripts developed for each step of this kind of complex analysis. This is made
possible by implementing a number of significant technical innovations into NeuroExM. Based on pilot work
performed in collaboration with the Boyden lab during preparation of this proposal, we are convinced that
NeuroExM will make a significant impact on the field of neuroscience research. Specifically, the combination of
ExM and NeuroExM will enable substantial advancements in research studies focusing on alterations in the
spatial transcriptome and proteome of neurons associated with neurodevelopmental, neuropsychiatric,
neurodegenerative and neurological disorders as well as in aging research and drug development. Ultimately,
this will result in an improved basis for developing novel treatment strategies for a wide spectrum of complex
brain diseases. In Phase I we will demonstrate feasibility of this novel technology by developing prototype
software; work in Phase II will focus on creating the full functionality of NeuroExM for commercial release. We
will perform extensive feasibility studies, product validation and usability studies of NeuroExM in close
collaboration with the Boyden lab. A competing technology is not available.
抽象的
该项目描述了 NeuroExM™ 的开发,这是一个高度创新的系统,用于执行
组织中信使 RNA (mRNA) 和蛋白质群体的综合空间分布分析
用于扩展显微镜(ExM))。 ExM 的突破性技术优势是
最近由 Edward S. Boyden 博士(麻省理工学院生物工程系、媒体实验室和脑认知科学系)开发,
马萨诸塞州剑桥市)及其同事的研究成果是,能够各向同性地扩展组织并增加生物体的尺寸。
结构。这使得能够对太小而无法观测的小物体进行纳米级分辨率的光学显微成像。
由于光的衍射极限,在没有膨胀的情况下解析。除其他好处外,ExM 还允许那些小型企业
使用更广泛的显微镜技术对结构进行成像。处理 ExM 组织还允许
重复杂交(用于研究 mRNA)和/或重复抗体染色(用于研究
蛋白质),结合重复的显微成像轮次。每轮产生相邻的,
高放大率、单视场图像堆栈,由至少一个形态参考通道组成
显示神经元亚细胞结构(体细胞、轴突、树突、树突棘、突触)以及一种
或几个显示 mRNA 和/或蛋白质的信息通道。空间分布综合分析
原位神经元中的 mRNA 和蛋白质群体需要组装所有执行的图像堆栈
舍入为单个、无缝且对齐的三维 (3D) ExM 图像,该图像是高维且
大小可能有几 TB。然而,这提出了许多计算挑战
显微镜图像配准、分割和分析。 NeuroExM 改变游戏规则的创新是
能够执行所有这些任务,而无需配备计算机科学家来运行现有的、
为这种复杂分析的每个步骤开发的单独的基于实验室的软件脚本。这是做的
通过在 NeuroExM 中实施许多重大技术创新,这成为可能。基于试点工作
在准备本提案期间与博伊登实验室合作进行,我们确信
NeuroExM 将对神经科学研究领域产生重大影响。具体来说,组合
ExM 和 NeuroExM 将使专注于改变的研究取得实质性进展
与神经发育、神经精神、
神经退行性和神经系统疾病以及衰老研究和药物开发。最终,
这将为开发针对广泛的复杂疾病的新治疗策略奠定更好的基础
脑部疾病。在第一阶段,我们将通过开发原型来证明这项新技术的可行性
软件;第二阶段的工作将侧重于创建 NeuroExM 的全部功能以供商业发布。我们
将密切对 NeuroExM 进行广泛的可行性研究、产品验证和可用性研究
与博伊登实验室的合作。没有可用的竞争技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACOB R GLASER其他文献
JACOB R GLASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACOB R GLASER', 18)}}的其他基金
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 99.56万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10755027 - 财政年份:2022
- 资助金额:
$ 99.56万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10603310 - 财政年份:2022
- 资助金额:
$ 99.56万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 99.56万 - 项目类别:
AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
- 批准号:
10258638 - 财政年份:2021
- 资助金额:
$ 99.56万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 99.56万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 99.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




