Deconstructive Molecular Editing Technology Involving C-C Bond Scission
涉及 C-C 键断裂的解构性分子编辑技术
基本信息
- 批准号:10600382
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AlkaloidsAlkenesAlzheimer&aposs DiseaseAntifungal AgentsAreaAsthmaBreathingCarbonChemicalsChemistryChronic BronchitisCouplingDiseaseFundingGoalsGrantHydrogen PeroxideHypersensitivityMediatingMethodsModificationMolecularNatural ProductsOxidation-ReductionOzonePainPathway interactionsPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhenolsProcessProductionPsoriasisPulmonary EmphysemaReactionRouteSleepSourceTechnologyTerpenesTherapeuticTransition ElementsVisionantimicrobialbasecarbonyl compoundchemical synthesisnovel strategiesoxidationpi bondprogramssingle bondstem
项目摘要
Supplement for Dehnert, Brady – Project Summary
Description of Funded Grant (Project Summary for R01 GM141327)
The overarching goal of this project is to harness the untapped reactivity of abundant feedstock materials and
renewable natural products to enable the production of useful synthetic intermediates and the late-stage
functionalization of biomedically relevant molecules. In particular, we have recently formulated new approaches
for selective C(sp3)–C(sp2) bond functionalization of alkenes, using a combination of O3-mediated oxidation and
Fe(II)-mediated reductive fragmentation–radical capture. The net result has been replacement of the alkene
C(sp3)–C(sp2) bond with C(sp3)–H, C(sp3)–S, C(sp3)–O, C=O, and C(sp3)–C(sp2) bonds. This redox-based
dealkenylative radical chemistry has allowed us to employ readily available natural products (e.g., terpenoids)
as starting materials to streamline the chemical synthesis of biologically active natural product targets and active
pharmaceutical ingredients (APIs). While many synthetic methods rely on the functionalization of C(sp2)–C(sp2)
double bonds, generalized methods for functionalizing alkene C(sp3)–C(sp2) linkages remain elusive. Our
reaction is the first generalized functionalization of the C(sp3)–C(sp2) single bond; therefore, we envisioned that
it would have broad impact on total synthesis, the late-stage diversification of pharmaceuticals, and the
preparation of value-added compounds from abundant starting materials. Going forward, we propose to develop
Fe(II)- or Cu(I)-catalyzed functionalization of alkene C(sp3)–C(sp2) bonds for the construction of C(sp3)–C and
C(sp3)–heteroatom bonds. Our inspiration for these transition metal–catalyzed dealkenylative cross-coupling
strategies originated from the bio-pathway for H2O2 decomposition catalyzed by Cu- and Fe-containing
peroxygenases. Furthermore, Cu possesses exceptional capacity for both the radical capture and reductive
elimination steps necessary for radical cross-couplings. We have used these catalytic strategies for modular
construction of C(sp3)–N bonds within terpenes and terpenoids, affording artificial terpenoid alkaloids, and to
provide a new vision for the editing of all-carbon frameworks. We will expand this strategy to C(sp3)–C bond-
forming processes related to, for example, Suzuki–Miyaura coupling, the Sonogashira reaction,
trifluoromethylation, and cyanation. We will expand the source of alkyl radicals to include carbonyls and phenols,
both of which can be converted into α-alkoxy hydroperoxides—the pivotal reaction intermediates. Finally,
leveraging the power of well-established enantioselective allylation, we will seek to establish a divergent route
to access a wide variety of enantiopure molecules featuring chiral quaternary centers. Realization of these
proposed aims would substantially impact the sustainable synthesis of fine chemicals. These studies will also
provide new visions and strategies for the editing of alkenes and other natural products. While our program does
not target a specific disease, collectively it could impact a variety of therapeutic areas by producing valuable
synthetic intermediates for and facilitating divergent modification of biomedically relevant molecules.
Dehnert, Brady的补充-项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHYUN KWON其他文献
OHYUN KWON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHYUN KWON', 18)}}的其他基金
Deconstructive Molecular Editing Technology Involving C-C Bond Scission
涉及 C-C 键断裂的解构性分子编辑技术
- 批准号:
10186271 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Deconstructive Molecular Editing Technology Involving C-C Bond Scission
涉及 C-C 键断裂的解构性分子编辑技术
- 批准号:
10553719 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Deconstructive Molecular Editing Technology Involving C-C Bond Scission
涉及 C-C 键断裂的解构性分子编辑技术
- 批准号:
10376330 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Deconstructive Molecular Editing Technology Involving C-C Bond Scission
涉及 C-C 键断裂的解构性分子编辑技术
- 批准号:
10727693 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Pilot-Scale Library Production Based on Phosphine Catalysis of Allenes
基于丙二烯膦催化的中试规模文库生产
- 批准号:
7677375 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Pilot-Scale Library Production Based on Phosphine Catalysis of Allenes
基于丙二烯膦催化的中试规模文库生产
- 批准号:
7493434 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Pilot-Scale Library Production Based on Phosphine Catalysis of Allenes
基于丙二烯膦催化的中试规模文库生产
- 批准号:
7925144 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Pilot-Scale Library Production Based on Phosphine Catalysis of Allenes
基于丙二烯膦催化的中试规模文库生产
- 批准号:
7293004 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Phosphine-Catalyzed Annulations and their Applications
磷化氢催化环化及其应用
- 批准号:
10205082 - 财政年份:2006
- 资助金额:
$ 4万 - 项目类别:
Phosphine-Catalyzed Annulations and Their Applications
磷化氢催化环化及其应用
- 批准号:
7825261 - 财政年份:2006
- 资助金额:
$ 4万 - 项目类别:
相似海外基金
Bifunctional Catalysts for MHAT Hydrofunctionalization of Alkenes
用于烯烃 MHAT 加氢官能化的双功能催化剂
- 批准号:
2400341 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
- 批准号:
22KJ2498 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
electrochemical dication pool: a new strategy to couple alkenes and abundant nucleophiles
电化学双阳离子池:偶联烯烃和丰富亲核试剂的新策略
- 批准号:
10635132 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Development of Remote Bismetalation Reaction of Alkenes via Chain Walking
链式行走烯烃远程双金属化反应的进展
- 批准号:
22KJ2699 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connective Stereospecific Generation of Alkenes Continued
烯烃的连接立体定向生成(续)
- 批准号:
2247031 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Expanding the small molecule toolbox through novel applications of fluorinated alkenes
通过氟化烯烃的新颖应用扩展小分子工具箱
- 批准号:
10714822 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Methods for Enantioselective Spirocycle Synthesis and Radical Hydroamination of Trisubstituted Alkenes
三取代烯烃的对映选择性螺环合成和自由基氢胺化方法
- 批准号:
10785901 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Ruthenium-catalyzed hydrophosphination of alkenes
钌催化的烯烃氢膦酸化
- 批准号:
575021-2022 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
University Undergraduate Student Research Awards
New Catalytic Transformations for the Synthesis of Alkenes and Organoboron Compounds
烯烃和有机硼化合物合成的新催化转化
- 批准号:
2102231 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
- 批准号:
21F21334 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




