Blind/Disability and Intersectional Biases in E-Health Records (EHRs) of Diabetes Patients: Building a Dialogue on Equity of AI/ML Models in Clinical Care
糖尿病患者电子健康记录 (EHR) 中的盲/残疾和交叉偏差:建立关于临床护理中 AI/ML 模型公平性的对话
基本信息
- 批准号:10599633
- 负责人:
- 金额:$ 31.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-12 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAfrican American populationAlgorithmsAll of Us Research ProgramBlack PopulationsBlack raceBlindnessCaringClinicalClinical ResearchCohort AnalysisCommunicationCommunitiesCompetenceComputerized Medical RecordDataData ScientistData SetDepositionDescriptorDiabetes MellitusDiabetic RetinopathyDisabled PersonsDocumentationEducational workshopEthicsEthnic groupEyeGenderGeneral PopulationGoalsGuidelinesHealthHealth Disparities ResearchHealthcareHearingInequalityInterdisciplinary StudyJusticeKnowledgeLabelLanguageLibrariesMedicalMedical centerMedicineModelingOutcomeParentsParticipantPatientsPatternPerceptionPharmaceutical PreparationsPhenotypePopulationPrevalenceQuality of lifeRaceRecordsReproducibilityResearchResearch PersonnelSeriesSex BiasSexismSubgroupSystemTrainingTreatment outcomeTrustVisionVisually Impaired PersonsWomanWorkanalytical toolbaseblindclinical careclinical data warehouseclinical implementationcohortcostdata modelingdemographicsdesigndisabilitydisorder riskeHealthethical legal social implicationexperiencehealth disparityhealth disparity populationshealth equity promotionhealth recordimprovedinterdisciplinary collaborationinterestintersectionalitymarginalized populationmembermenmultilevel analysisopen sourcepilot testprecision medicineracial and ethnicracial biasracial diversityracial populationracismrecruitsocial exclusionsocial health determinantstrustworthiness
项目摘要
The use of AI/ML analytical tools to predict disease risk, onset and progression, and treatment outcomes is
growing and holds promise for improving health outcomes for marginalized health disparities population. Yet,
there is indication that people with disabilities—the largest health disparities group in the US—will not be able
to reap the benefits of these scientific advancements. In the Parent R01, we explore the views of adults with
vision, hearing, and mobility disabilities on trust in and trustworthiness of precision medicine research (PMR), a
major training dataset for AI/ML applications. Community members in this R01 and the PI’s prior work identified
disability bias in clinical and research settings as a key barrier to trust and participation in PMR. These findings
are prominent for blind adults who both express the highest interest in participating in PMR and concern about
disability bias in medical interactions. Studies also show that clinicians view blind patients as incompetent,
regardless of abilities, and as difficult patients, despite structural issues that compromise the health outcomes
of blind patients (e.g., inaccessible drug labels). Insofar as disability bias is presented in the medical
documentation of blind patients, the use of such data in AI/ML models can affect care and reproduce,
even worsen, existing health disparities. The worry is amplified for blind patients encountering intersectional
marginalization, for whom health disparities are compounded. The prevalence of preventable blindness (e.g.,
diabetic retinopathy, a common and leading cause of blindness) is disproportionately high among women and
marginalized racial/ethnic communities, especially Black/African American individuals, but also that gender and
racial biases exist in electronic medical records (EHRs). Assessing whether disability bias—as an independent
and intersectional factor—is presented in EHRs is thus crucial for AI/ML models to develop equitable analytical
tools to improve health outcomes for all. Yet, no study has explored disability bias in EHRs, major training
dataset for AI/ML models, or assessed how disability bias compounds racial and gender biases that
are embedded in EHRs. The proposed study is led by a new interdisciplinary research team and uses an
intersectionality framework and disability community-engaged model to begin closing the gaps. We will: 1)
Develop, validate, and disseminate reproducible phenotype definitions for diabetes-related blindness and
create cohorts for analyses using the EHRs of diabetes patients (2016-22) from a large urban medical center
serving highly diverse racial/ethnic populations; 2) Identify and evaluate a list of blind/disability-related negative
patient descriptors in clinical documentation; and 3) Assess the use of disability biased language in EHRs of
diabetes patients (blind, nonblind) and if negative descriptors in EHRs varied intersectionally (men/women,
Black/White). This project has the potential to inform equitable AI/ML models in clinical care, improve health
outcomes of an often invisible but large and growing health disparity population, and build a dialogue on
disability ethics and equity of AI/ML among clinicians, data scientists, blind adults, and ELSI researchers.
使用AI/ML分析工具来预测疾病风险、发病和进展以及治疗结果是
它正在增长,并有望改善被边缘化的健康差距人群的健康状况。然而,
有迹象表明,残疾人--美国最大的健康差距群体--将无法
以获取这些科学进步的好处。在家长R01中,我们探索成年人的观点
视力、听力和行动能力障碍对精确医学研究(PMR)的信任和可信度,a
AI/ML应用程序的主要训练数据集。本R01中的社区成员和PI之前的工作确定
临床和研究环境中的残疾偏见是信任和参与PMR的关键障碍。这些发现
对于盲人成年人来说是突出的,他们既对参与PMR表现出最高的兴趣,也对
医疗互动中的残疾偏见。研究还表明,临床医生认为盲人患者无能,
无论能力如何,都是困难的患者,尽管结构性问题会影响健康结果
对于失明患者(例如,无法获取的药品标签)。在医学上出现残疾偏见的情况下
对于盲人患者的记录,在AI/ML模型中使用此类数据可能会影响护理和生殖,
更糟糕的是,现有的健康差距。对于盲人患者来说,这种担忧被放大了
边缘化,对他们来说,健康差距加剧了。可预防失明的流行(例如,
糖尿病视网膜病变是导致失明的常见和主要原因)在女性和
被边缘化的种族/族裔社区,特别是黑人/非裔美国人,而且还有性别和
电子病历(EHR)中存在种族偏见。评估残疾偏见--作为一名独立人士
和交叉因子--在EHR中呈现,因此对于AI/ML模型开发公平的分析是至关重要的
改善所有人健康结果的工具。然而,还没有研究探索EHR中的残疾偏见,这是主要的培训
AI/ML模型的数据集,或评估残疾偏见如何加剧种族和性别偏见
都嵌入了电子病历中。这项拟议的研究由一个新的跨学科研究团队领导,并使用了
交叉框架和残疾人社区参与模式,以开始弥合差距。我们将:1)
开发、验证和传播糖尿病相关失明的可重复表型定义和
使用大型城市医疗中心的糖尿病患者(2016-22年)的EHR创建分析队列
服务于高度多样化的种族/民族人口;2)确定和评估与失明/残疾相关的负面清单
临床文件中的患者描述;以及3)评估在电子病历中残疾偏见语言的使用
糖尿病患者(盲人和非盲人),如果EHR中的负面描述因素有交叉变化(男性/女性,
黑/白)。该项目有可能为临床护理中公平的AI/ML模型提供信息,改善健康
经常看不见但健康差距很大且不断扩大的人口的结果,并就以下问题开展对话
临床医生、数据科学家、失明成年人和ELSI研究人员之间的残疾伦理和AI/ML的公平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maya Sabatello其他文献
Maya Sabatello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maya Sabatello', 18)}}的其他基金
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10259657 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10653189 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10370875 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10477382 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Impact of Psychiatric Genetic Data on Civil Litigation and its Relationship with Stigma
精神病学基因数据对民事诉讼的影响及其与耻辱的关系
- 批准号:
9330895 - 财政年份:2015
- 资助金额:
$ 31.12万 - 项目类别:
Impact of Psychiatric Genetic Data on Civil Litigation and its Relationship with Stigma
精神病学基因数据对民事诉讼的影响及其与耻辱的关系
- 批准号:
8951309 - 财政年份:2015
- 资助金额:
$ 31.12万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 31.12万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 31.12万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 31.12万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 31.12万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 31.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 31.12万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 31.12万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别:
Studentship














{{item.name}}会员




