Blind/Disability and Intersectional Biases in E-Health Records (EHRs) of Diabetes Patients: Building a Dialogue on Equity of AI/ML Models in Clinical Care
糖尿病患者电子健康记录 (EHR) 中的盲/残疾和交叉偏差:建立关于临床护理中 AI/ML 模型公平性的对话
基本信息
- 批准号:10599633
- 负责人:
- 金额:$ 31.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-12 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAfrican American populationAlgorithmsAll of Us Research ProgramBlack PopulationsBlack raceBlindnessCaringClinicalClinical ResearchCohort AnalysisCommunicationCommunitiesCompetenceComputerized Medical RecordDataData ScientistData SetDepositionDescriptorDiabetes MellitusDiabetic RetinopathyDisabled PersonsDocumentationEducational workshopEthicsEthnic groupEyeGenderGeneral PopulationGoalsGuidelinesHealthHealth Disparities ResearchHealthcareHearingInequalityInterdisciplinary StudyJusticeKnowledgeLabelLanguageLibrariesMedicalMedical centerMedicineModelingOutcomeParentsParticipantPatientsPatternPerceptionPharmaceutical PreparationsPhenotypePopulationPrevalenceQuality of lifeRaceRecordsReproducibilityResearchResearch PersonnelSeriesSex BiasSexismSubgroupSystemTrainingTreatment outcomeTrustVisionVisually Impaired PersonsWomanWorkanalytical toolbaseblindclinical careclinical data warehouseclinical implementationcohortcostdata modelingdemographicsdesigndisabilitydisorder riskeHealthethical legal social implicationexperiencehealth disparityhealth disparity populationshealth equity promotionhealth recordimprovedinterdisciplinary collaborationinterestintersectionalitymarginalized populationmembermenmultilevel analysisopen sourcepilot testprecision medicineracial and ethnicracial biasracial diversityracial populationracismrecruitsocial exclusionsocial health determinantstrustworthiness
项目摘要
The use of AI/ML analytical tools to predict disease risk, onset and progression, and treatment outcomes is
growing and holds promise for improving health outcomes for marginalized health disparities population. Yet,
there is indication that people with disabilities—the largest health disparities group in the US—will not be able
to reap the benefits of these scientific advancements. In the Parent R01, we explore the views of adults with
vision, hearing, and mobility disabilities on trust in and trustworthiness of precision medicine research (PMR), a
major training dataset for AI/ML applications. Community members in this R01 and the PI’s prior work identified
disability bias in clinical and research settings as a key barrier to trust and participation in PMR. These findings
are prominent for blind adults who both express the highest interest in participating in PMR and concern about
disability bias in medical interactions. Studies also show that clinicians view blind patients as incompetent,
regardless of abilities, and as difficult patients, despite structural issues that compromise the health outcomes
of blind patients (e.g., inaccessible drug labels). Insofar as disability bias is presented in the medical
documentation of blind patients, the use of such data in AI/ML models can affect care and reproduce,
even worsen, existing health disparities. The worry is amplified for blind patients encountering intersectional
marginalization, for whom health disparities are compounded. The prevalence of preventable blindness (e.g.,
diabetic retinopathy, a common and leading cause of blindness) is disproportionately high among women and
marginalized racial/ethnic communities, especially Black/African American individuals, but also that gender and
racial biases exist in electronic medical records (EHRs). Assessing whether disability bias—as an independent
and intersectional factor—is presented in EHRs is thus crucial for AI/ML models to develop equitable analytical
tools to improve health outcomes for all. Yet, no study has explored disability bias in EHRs, major training
dataset for AI/ML models, or assessed how disability bias compounds racial and gender biases that
are embedded in EHRs. The proposed study is led by a new interdisciplinary research team and uses an
intersectionality framework and disability community-engaged model to begin closing the gaps. We will: 1)
Develop, validate, and disseminate reproducible phenotype definitions for diabetes-related blindness and
create cohorts for analyses using the EHRs of diabetes patients (2016-22) from a large urban medical center
serving highly diverse racial/ethnic populations; 2) Identify and evaluate a list of blind/disability-related negative
patient descriptors in clinical documentation; and 3) Assess the use of disability biased language in EHRs of
diabetes patients (blind, nonblind) and if negative descriptors in EHRs varied intersectionally (men/women,
Black/White). This project has the potential to inform equitable AI/ML models in clinical care, improve health
outcomes of an often invisible but large and growing health disparity population, and build a dialogue on
disability ethics and equity of AI/ML among clinicians, data scientists, blind adults, and ELSI researchers.
使用AI/ML分析工具来预测疾病的风险,发作和进展以及治疗结果是
增长和持股有望改善边缘化健康分布人群的健康成果。然而,
有迹象表明残疾人(美国最大的健康差异群体)将无法
获得这些科学进步的好处。在父母R01中,我们探讨了成年人的观点
关于精密医学研究(PMR)的信任和可信度的远见,听力和流动性障碍,
AI/ML应用程序的主要培训数据集。 R01中的社区成员和PI先前的工作已确定
临床和研究环境中的残疾偏见是信任和参与PMR的关键障碍。这些发现
对于盲人成年人而言,他们对参与PMR的最高兴趣以及对
医疗互动中的残疾偏见。研究还表明,临床医生认为盲人无能为力,
不管能力和困难的患者如何,都会损害健康结果的绝望结构性问题
盲人患者(例如,无法访问的药物标签)。就医疗而出现了残疾偏见
盲人患者的文献,在AI/ML模型中使用此类数据会影响护理和繁殖,
更糟糕的是,现有的健康差异。对于遇到室内及的盲人患者的担忧是放大的
边缘化,健康差异更加复杂。可预防失明的患病率(例如
糖尿病性视网膜病,是失明的常见和主要原因)在女性中,
边缘化的种族/族裔社区,尤其是黑人/非裔美国人的个人,也是性别和性别
电子病历(EHRS)中存在种族偏见。评估残疾偏见是否是独立的
与EHR中的交叉因子 - 因此,对于AI/ML模型,具有公平分析性至关重要
改善所有人健康成果的工具。然而,没有研究探索EHR的残疾偏见,重大培训
AI/ML模型的数据集,或评估残疾偏见如何使种族和性别偏见如何
嵌入在EHR中。拟议的研究由新的跨学科研究团队领导,并使用
交叉性框架和残疾社区参与模型开始缩小差距。我们将:1)
开发,验证和传播与糖尿病相关的失明和
使用糖尿病患者的EHR(2016-22)从一个大型城市医学中心创建分析的同类
为高度潜水员的种族/民族人口服务; 2)识别和评估与盲人/残疾相关的负面的列表
临床文档中的患者描述符; 3)评估在EHR中使用残疾偏见语言的使用
糖尿病患者(盲人,非盲)以及EHR中的负面描述在交叉上变化(男性/女性,
黑色/白色)。该项目有可能为临床护理中的公平AI/ML模型提供信息,改善健康状况
经常看不见但较大且不断增长的健康差异人口的结果,并建立对话
临床医生,数据科学家,盲人成年人和ELSI研究人员中AI/ML的残疾伦理和平等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maya Sabatello其他文献
Maya Sabatello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maya Sabatello', 18)}}的其他基金
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10259657 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10653189 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10370875 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Disability, diversity and trust in precision medicine research: stakeholdersengagement
精准医学研究中的残疾、多样性和信任:利益相关者参与
- 批准号:
10477382 - 财政年份:2021
- 资助金额:
$ 31.12万 - 项目类别:
Impact of Psychiatric Genetic Data on Civil Litigation and its Relationship with Stigma
精神病学基因数据对民事诉讼的影响及其与耻辱的关系
- 批准号:
9330895 - 财政年份:2015
- 资助金额:
$ 31.12万 - 项目类别:
Impact of Psychiatric Genetic Data on Civil Litigation and its Relationship with Stigma
精神病学基因数据对民事诉讼的影响及其与耻辱的关系
- 批准号:
8951309 - 财政年份:2015
- 资助金额:
$ 31.12万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Hospice exposure and utilization among older African Americans with ADRD and their decisional support persons
患有 ADRD 的老年非洲裔美国人及其决策支持人员的临终关怀暴露和利用
- 批准号:
10679558 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别:
The Role of Lipids in Alzheimer's Disease and Related Dementias among Black Americans: Examining Lifecouse Mechanisms
脂质在美国黑人阿尔茨海默病和相关痴呆中的作用:检查生命机制
- 批准号:
10643344 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别:
Leveraging pleiotropy to develop polygenic risk scores for cardiometabolic diseases
利用多效性开发心脏代谢疾病的多基因风险评分
- 批准号:
10797389 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别:
Integrated, Individualized, and Intelligent Prescribing (I3P) Clinical Trial Network
一体化、个体化、智能处方(I3P)临床试验网络
- 批准号:
10822651 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别:
Monitoring Community Efforts to Increase Colorectal Cancer Screening in African Americans
监测社区为增加非裔美国人结直肠癌筛查所做的努力
- 批准号:
10627341 - 财政年份:2023
- 资助金额:
$ 31.12万 - 项目类别: