Molecular Mechanisms Governing Vascular Cell Function and Phenotype in Health and Disease
健康和疾病中控制血管细胞功能和表型的分子机制
基本信息
- 批准号:10600825
- 负责人:
- 金额:$ 74.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptor Signaling ProteinAortaApolipoprotein EAreaArterial Fatty StreakArteriesAtherosclerosisAttenuatedBiochemicalBlood VesselsCardiovascular DiseasesCause of DeathCd68Cell Culture TechniquesCell physiologyCellsCholesterolChronicComplementCoronary heart diseaseDataDevelopmentDietDiseaseEndocytosisEndothelial CellsEndotheliumFamilyFoam CellsFoundationsGene ExpressionGenesGoalsHealthHeart DiseasesHomeostasisHumanImmuneIn VitroInfiltrationInflammationInflammatoryKnockout MiceLaboratoriesLegal patentLesionLightMediatingMesenchymalMissionModelingMolecularMolecular TargetMorbidity - disease rateMouse StrainsMusMutant Strains MiceMyeloid CellsOsteogenesisPTPRC genePathogenesisPathologicPhenotypePlayProcessProteinsReagentRepressionResolutionRoleSignal PathwaySignal TransductionSmall Interfering RNASmooth Muscle MyocytesSourceStimulusTestingTherapeuticTherapeutic EffectTimeTransgenic OrganismsUbiquitinationUnited States National Institutes of HealthVascular DiseasesVascular Smooth MuscleWorkarterial stiffnessatherogenesiscalcificationcell regenerationendothelial dysfunctionendothelial repairepsinepsin 1experimental studyfortificationin vitro Modelinjuredinjury and repairinnovationinsightmortalitymultidisciplinarynanoparticlenanoparticle deliverynext generationnovelnovel therapeuticsosteogenicoverexpressionoxidized low density lipoproteinpluripotencypreventresponsesiRNA deliverytargeted treatmenttherapeutic targettooltranscription factortranscriptome sequencingtransdifferentiationtranslational potentialvascular inflammation
项目摘要
PROJECT SUMMARY/ABSTRACT
Endothelial dysfunction resulting from chronic inflammation and elevated circulating cholesterol promotes the
formation of plaques in the sub-endothelium of major arteries causing coronary heart disease—a leading
cause of morbidity and mortality worldwide. Repair of the injured endothelium holds great promise to treat
heart disease; however, endogenous endothelial cell (EC) regeneration is an inefficient process. The ability to
restore patency of the arterial endothelium would provide a significant therapeutic advancement. Because
vascular smooth muscle cells (VSMCs) constitute the majority of cells in the arterial wall and are capable of
phenotypic plasticity in response to pathophysiological stimuli, these cells represent an appealing source of
functional endothelial cells. Unraveling the molecular mechanisms and signaling pathways that govern trans-
differentiation of VSMCs into ECs to mend the injured endothelium would establish a novel treatment paradigm
for coronary heart disease. Our long-term goal is to discover new molecules and signaling pathways that
facilitate VSMC-to-endothelial transition (MEndoT). Our laboratory has identified and characterized a family of
evolutionarily-conserved endocytic adaptor proteins called epsins, which have crucial roles in coordinating
endocytosis and signal transduction. Our studies show that loss of epsins 1 and 2 in ECs and myeloid cells
reduces vascular inflammation and prevents plaque initiation and progression. To further assess the
therapeutic effects of targeting epsins in cells that drive lesion progression as well as plaque composition and
stability, we will use recently created disease-specific mice harboring VSMC-specific deficiency of these
epsins. We propose to interrogate the function of VSMC epsin proteins in these processes and establish that
therapeutic targeting of these proteins will promote beneficial VSMC phenotype switching. So far, our
preliminary studies indicate that ApoE-/- mice with a deficiency in VSMC epsins have a significant reduction in
plaque size, enhanced plaque stability (including an increase in fibrous cap area and ACTA2+ cells within the
cap), a reduction in the number of infiltrating cells (CD45+ immune and inflammatory cells and CD68+ foam
cells), and a prominent decrease in vascular stiffness and calcification. In addition, RNA-seq analyses show
that Klf4, the pluripotent transcriptional factor controlling phenotypic switching of VSMCs, is downregulated by
epsin loss, as is oxLDL-triggered Runx2 ubiquitination and degradation. In light of these findings, we will
investigate the following Specific Aims using unique mutant mice, in vitro models, and novel reagents: 1) To
determine the molecular mechanisms by which epsins regulate phenotype switching and mesenchymal-to-
endothelial differentiation, 2) To determine the molecular mechanisms by which epsins regulate VSMC
osteogenesis and promote arterial stiffness, and 3) To determine the therapeutic potential of targeting epsins
for atheroma formation and resolution. If fruitful, the proposed study will complement our prior work and
strengthen the concept that epsin proteins may serve as a potent therapeutic target for coronary heart disease.
项目总结/摘要
由慢性炎症和循环胆固醇升高引起的内皮功能障碍促进了内皮细胞的增殖。
在主要动脉的内皮下层形成斑块,导致冠心病,
是全球发病率和死亡率的主要原因。修复受损的内皮细胞有望治疗
然而,内源性内皮细胞(EC)再生是一个低效的过程。的能力
恢复动脉内皮的通畅将提供显着的治疗进步。因为
血管平滑肌细胞(VSMC)构成动脉壁中的大多数细胞,
表型可塑性响应病理生理刺激,这些细胞代表了一个有吸引力的来源,
功能性内皮细胞揭示了控制跨-
将VSMCs分化为EC以修复受损的内皮将建立一种新的治疗模式
治疗冠心病我们的长期目标是发现新的分子和信号通路,
促进血管平滑肌细胞向内皮细胞转化(MEEndoT)。我们的实验室已经鉴定并鉴定了一个家族,
进化上保守的内吞衔接蛋白称为epsins,在协调
内吞作用和信号转导。我们的研究表明,内皮细胞和髓系细胞中epsin 1和2的缺失
减少血管炎症并防止斑块形成和发展。以进一步评估
靶向驱动病变进展的细胞中的epsin以及斑块组成的治疗效果,
稳定性,我们将使用最近创建的疾病特异性小鼠,这些小鼠具有VSMC特异性缺陷,
胰蛋白酶我们建议询问VSMC epsin蛋白在这些过程中的功能,并建立
这些蛋白质的治疗靶向将促进有益的VSMC表型转换。到目前为止我们
初步研究表明,VSMC epsins缺乏的ApoE-/-小鼠,
斑块大小、增强的斑块稳定性(包括纤维帽面积和ACTA 2+细胞的增加),
cap)、浸润细胞(CD 45+免疫和炎性细胞以及CD 68+泡沫细胞)数量的减少
细胞),以及血管硬度和钙化的显著降低。此外,RNA-seq分析显示,
Klf 4是控制VSMC表型转换的多能转录因子,
胰蛋白酶损失,如oxLDL触发的Runx 2泛素化和降解。根据这些发现,我们将
使用独特的突变小鼠、体外模型和新型试剂研究以下特定目的:1)
确定epsins调节表型转换和间充质-间充质转化的分子机制。
2)确定epsins调节VSMC的分子机制
骨生成和促进动脉硬化,以及3)确定靶向epsin的治疗潜力
用于动脉粥样硬化形成和消退。如果这项拟议的研究取得成果,将补充我们先前的工作,
加强epsin蛋白可能作为冠心病有效治疗靶点的概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Chen其他文献
Hong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Chen', 18)}}的其他基金
Role of PXR in drug-elicited cardiovascular disease
PXR 在药物引起的心血管疾病中的作用
- 批准号:
10576675 - 财政年份:2022
- 资助金额:
$ 74.34万 - 项目类别:
Sonobiopsy for Noninvasive Genetic Evaluation of Glioblastoma Patients
声活检对胶质母细胞瘤患者进行无创基因评估
- 批准号:
10564014 - 财政年份:2022
- 资助金额:
$ 74.34万 - 项目类别:
The Role of Adaptor Protein Disabled-2 in Maintaining Endothelial Cell Function in Atherosclerosis
接头蛋白Disabled-2在维持动脉粥样硬化内皮细胞功能中的作用
- 批准号:
10532247 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
iSonogenetics for incisionless cell-type-specific neuromodulation of non-human primate brains
非人类灵长类大脑的无切口细胞类型特异性神经调节的声遗传学
- 批准号:
10655585 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
The Role of Adaptor Protein Disabled-2 in Maintaining Endothelial Cell Function in Atherosclerosis
接头蛋白Disabled-2在维持动脉粥样硬化内皮细胞功能中的作用
- 批准号:
10391797 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
iSonogenetics for incisionless cell-type-specific neuromodulation of non-human primate brains
非人类灵长类大脑的无切口细胞类型特异性神经调节的声遗传学
- 批准号:
10270569 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx) supplement
聚焦超声脑肿瘤液体活检 (FUS-LBx) 补充剂
- 批准号:
10448708 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Molecular Mechanisms Governing Vascular Cell Function and Phenotype in Health and Disease
健康和疾病中控制血管细胞功能和表型的分子机制
- 批准号:
10380102 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
The role of signaling adaptor protein epsin in atherosclerosis
信号转接蛋白epsin在动脉粥样硬化中的作用
- 批准号:
10318660 - 财政年份:2020
- 资助金额:
$ 74.34万 - 项目类别:
相似海外基金
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10807379 - 财政年份:2023
- 资助金额:
$ 74.34万 - 项目类别:
Clinical benefits and mechanism of action of angiotensin-II receptor blocker on Cardiovascular remodeling in patients with repaired coarctation of aorta
血管紧张素II受体阻滞剂对主动脉缩窄修复患者心血管重塑的临床疗效及作用机制
- 批准号:
10734120 - 财政年份:2023
- 资助金额:
$ 74.34万 - 项目类别:
Development of new preventive method for postoperative paraplegia of thoracoabdominal aorta using exosomes
利用外泌体开发胸腹主动脉术后截瘫的新预防方法
- 批准号:
22K08940 - 财政年份:2022
- 资助金额:
$ 74.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Hemodynamic Mechanisms of Heart-Aorta-Brain Coupling with An Integrated Preventive Medicine Education Program for Socioeconomically Disadvantaged Groups
职业:心-主动脉-脑耦合的血流动力学机制以及针对社会经济弱势群体的综合预防医学教育计划
- 批准号:
2145890 - 财政年份:2022
- 资助金额:
$ 74.34万 - 项目类别:
Continuing Grant
Dissecting the role of hemodynamics in ascending aorta aneurysm development in bicuspid aortic valve disease
剖析血流动力学在二叶式主动脉瓣疾病升主动脉瘤发展中的作用
- 批准号:
500274 - 财政年份:2022
- 资助金额:
$ 74.34万 - 项目类别:
Studentship Programs
Smooth muscle cell diversity and thoracic aorta vulnerability
平滑肌细胞多样性和胸主动脉脆弱性
- 批准号:
453372 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Operating Grants
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10613402 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Development of bifurcated curved bio-tube for the aorta with in-body tissue architecture
开发具有体内组织结构的主动脉分叉弯曲生物管
- 批准号:
21H03819 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




