Harnessing big-data for plasticity and rehabilitation in translational SCI
利用大数据实现转化 SCI 的可塑性和康复
基本信息
- 批准号:10599836
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAmericanArtificial IntelligenceAutonomic DysfunctionAwardBehaviorBehavior assessmentBig DataBig Data MethodsBig Data to KnowledgeCellular biologyCervicalCervical spinal cord injuryChronicClinicalCollaborationsComplexDataData AnalysesData CollectionData CommonsData ScienceDatabasesDedicationsDevelopmentDevicesDiseaseEconomic BurdenElectronic Health RecordElectrophysiology (science)EnsureFAIR principlesFDA approvedForelimbFundingFutureGoalsHand functionsHealthHigh PrevalenceHistologyHumanImageIndividualInfrastructureIngestionInjuryInvestmentsKnowledge DiscoveryLaboratoriesLearningMachine LearningMeasuresMedicalModelingModernizationMolecular BiologyMotorNatural regenerationNeurologicNeurostimulation procedures of spinal cord tissuePainParalysedPerformancePhysiologyPopulationPositioning AttributePreparationPrimatesProgramming LanguagesPublic Health InformaticsPythonsQuality of lifeRecoveryRegenerative researchRehabilitation therapyResearchResolutionRetrievalRoboticsRodent ModelSafetySensorySideSiteSpinal cord injuryStructureSyndromeSystemTaxonomyTechnologyTestingTherapeuticTimeTrainingTranslatingTranslationsVeteransWorkbrain machine interfacecare burdenclinical translationcloud basedcortex mappingcostdashboarddata ingestiondata integrationdata reusedata sharingdata streamsdeep neural networkdigitaldigital technologyefficacy studyelectronic datafederated datafunctional restorationgrasphealth recordimprovedinformatics toolinnovationkinematicsmachine learning pipelinemultidimensional datamultimodal datamultimodalityneurological rehabilitationneurophysiologyneuroregulationnonhuman primatenovelnovel therapeuticsopen sourcepersistent symptompre-clinicalprecision medicineproductivity lossregenerativeregenerative therapyresearch clinical testingrobot rehabilitationrobotic devicesafety studyshared databasespasticitystructured datasuccesstherapeutic candidatetooltranslation to humanstranslational pipelinetranslational studytranslational therapeuticsusability
项目摘要
Spinal cord injury and disorders (SCI/D) are substantial health concerns impacting veterans at a higher rate
than the civilian population. The total economic burden of SCI/D is estimated at $9 billion/year to $400 billion in
lifetime medical and loss-of-productivity costs. The most common clinical presentation is high cervical SCI/D
which produces a broad spectrum of issues, including loss of hand function, autonomy, sensory changes,
spasticity, pain and autonomic dysfunction, profoundly impacting quality of life. Restoring these functions is the
goal of regenerative and rehabilitative therapeutic approaches for SCI/D. The VA Gordon Mansfield Spinal
Cord Injury Consortium (VA-GMSCIC) is a VA-funded effort to develop late-stage translational therapeutics in
a nonhuman primate (NHP) model in preparation for testing emergent therapeutic approaches clinically. Prior
and current funding has focused on multifaceted data collection on each subject with 5 different centers
collaboratively collecting data, each within their specific domain of expertise (physiology, behavior, histology,
neurorehabilitation, and molecular biology). This is an ideal use of the NHP model, as maximal information is
collected about the performance of therapeutic approaches in a small number of NHPs. Data from this
important model is characterized by the classic ‘3Vs of Big Data’: high volume (large images), high variety
(multi-modal data), and high velocity (robotic rehab; physiology; neuromodulation), providing both a challenge
and opportunity for novel discoveries. Application of modern data science tools can help deliver on the promise
of translational precision medicine for SCI/D. As our prior work demonstrates, effective management of VA
NHP big data enables us to effectively harness VA-GMSCIC data to drive new discoveries. However,
integrating these NHP big data requires ongoing data-driven integration of robotic rehab, kinematics, histology,
and medical information. Extraction of meaningful discoveries requires extensive computational work. The
purpose of the proposed renewal is to build on our ongoing success in assembling a data commons for the
VA-GMSCIC by integrating new types of high-resolution data in support of safety/efficacy studies of novel
therapeutics. Our data science team is well positioned to achieve this goal. Our team has provided analytical
support for the VA-GMSCIC, helping to integrate data from UCSD, UCLA, UCI, UC Davis and UCSF for testing
SCI rehab and regenerative therapies in NHPs for over 13 years. We have supported development of different
injury models, behavioral assessments, electrophysiology, kinematic measures, and therapeutic approaches in
100+ subjects. Under our current merit award (ending Nov 2020), our team built on this historical background
to establish a functional primate data commons (PDC-SCI) infrastructure that enables rapid, structured data
sharing, data integration, and analytics support across the VA-GMSCIC sites. The project has helped the VA-
GMSCIC evolve from focused discovery projects to late-stage translational studies with highly-sophisticated,
large-scale “big-data” collection. We aim to expand our knowledge-discovery pipeline for these critical
translational SCI/D big data to support planned safety/efficacy studies. Specifically, the renewal will build on
our successes and expand the scope of our work by supporting integration of: Aim 1) translational electronic
health records (tEHR), Aim 2) advanced robotic rehabilitation data, Aim 3) neuromodulation data from brain-
machine interfaces, and Aim 4) advanced machine learning analytical pipelines for rapidly integrating
multidimensional data. The goal is to help VA-GMSCIC efficiently test important therapeutic candidates for
translation to humans while promoting modern data stewardship adhering to the federally-endorsed FAIR
(Findable, Accessible, Interoperable, and Reusable) data sharing principles. This will ensure that the existing
VA investment in data collection is leveraged to the maximal extent through digital technologies for enduring
knowledge-discovery from this valuable NHP model of SCI/D.
脊髓损伤和疾病(SCI/D)是影响退伍军人的主要健康问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM R FERGUSON其他文献
ADAM R FERGUSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM R FERGUSON', 18)}}的其他基金
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10276397 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enhancing the Pan-Neurotrauma Data Commons (PANORAUMA) to a complete open data science tool by FAIR APIs
通过 FAIR API 将泛神经创伤数据共享 (PANORAUMA) 增强为完整的开放数据科学工具
- 批准号:
10608657 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10649639 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10449363 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
9742296 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10641318 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10757109 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
- 批准号:
EP/Y034694/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant