Predicting transcriptional signatures and tumor subtypes from circulating tumor DNA

从循环肿瘤 DNA 预测转录特征和肿瘤亚型

基本信息

  • 批准号:
    10601439
  • 负责人:
  • 金额:
    $ 20.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-10 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Tumor phenotype changes, such as trans-differentiation in lethal prostate cancers and hormone receptor conversions in breast cancer, are increasingly frequent observations as resistance mechanisms to targeted therapies. Therefore, characterizing the transcriptional regulation that drives treatment-induced tumor phenotype changes during therapy in “real-time” has critical implications for studying mechanisms of resistance to therapies and informing clinical treatment decisions. Surveillance of molecular changes in tumors is especially challenging because the location and number of metastatic sites make it intractable to perform repeated biopsies. As a result, it is difficult to characterize tumor evolution and cellular plasticity during therapy, exemplifying a major limitation of current treatment strategies and precision medicine for patients with metastatic cancer. Circulating tumor DNA (ctDNA) released from tumor cells into the blood is a non-invasive “liquid biopsy” solution for addressing challenges in tissue accessibility. Current research and clinical efforts have focused on detecting genomic alterations in ctDNA. However, studying the tumor phenotype from ctDNA remains challenging and is still a nascent area of research. The objective of this proposal is to develop an innovative computational method to profile and integrate genomic alterations, chromatin accessibility, and transcriptional regulation directly from standard ctDNA sequencing data. Recent advances and our preliminary studies now demonstrate the intriguing possibility to profile these “multi- omic” patterns solely from computational analysis of standard ctDNA whole genome sequencing data. However, there is still a lack of tools to predict transcriptional profiles from ctDNA. In Aim 1, we will develop a generalized framework to predict transcriptional regulation from ctDNA. We will optimize ctDNA data normalization and develop an unsupervised probabilistic generative model for predicting chromatin accessibility and transcriptional regulation in ctDNA. To evaluate the method, we will perform benchmarking using plasma ctDNA from patient- derived xenograft models. In Aim 2, we will test the hypothesis that the multi-omic signatures profiled from ctDNA will provide a non-invasive approach to classify tumor subtypes and to survey molecular phenotype changes during therapy. We will develop classifiers for predicting tumor subtypes and phenotype changes in adult and pediatric cancers. To test the utility for characterizing multi-omic signature and predicting treatment-induced phenotype changes, we will analyze serial ctDNA samples from patients receiving targeted therapies. The method will be implemented as an open-source R package, and a workflow that can be deployed on local and cloud environments, facilitating its adoption in the cancer research community. This proposal addresses the urgent unmet clinical need for better analytical approaches to study cancer treatment resistance in “real-time” and to advance cancer precision medicine.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gavin Ha其他文献

Gavin Ha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gavin Ha', 18)}}的其他基金

Evaluating prostate cancer phenotype and genotype classification from circulating tumor DNA as biomarkers for predicting treatment outcomes
根据循环肿瘤 DNA 评估前列腺癌表型和基因型分类作为预测治疗结果的生物标志物
  • 批准号:
    10804464
  • 财政年份:
    2023
  • 资助金额:
    $ 20.19万
  • 项目类别:
Translating the tumor regulome from cell-free DNA for precision oncology
将游离 DNA 转化为肿瘤调节组以实现精准肿瘤学
  • 批准号:
    10818290
  • 财政年份:
    2022
  • 资助金额:
    $ 20.19万
  • 项目类别:
Translating the tumor regulome from cell-free DNA for precision oncology
将游离 DNA 转化为肿瘤调节组以实现精准肿瘤学
  • 批准号:
    10473384
  • 财政年份:
    2022
  • 资助金额:
    $ 20.19万
  • 项目类别:
Predicting transcriptional signatures and tumor subtypes from circulating tumor DNA
从循环肿瘤 DNA 预测转录特征和肿瘤亚型
  • 批准号:
    10487475
  • 财政年份:
    2021
  • 资助金额:
    $ 20.19万
  • 项目类别:
Predicting transcriptional signatures and tumor subtypes from circulating tumor DNA
从循环肿瘤 DNA 预测转录特征和肿瘤亚型
  • 批准号:
    10305561
  • 财政年份:
    2021
  • 资助金额:
    $ 20.19万
  • 项目类别:
Identifying driver non-coding alterations in metastatic prostate cancer from tumor and cell-free DNA
从肿瘤和游离 DNA 中识别转移性前列腺癌的驱动非编码改变
  • 批准号:
    10380659
  • 财政年份:
    2020
  • 资助金额:
    $ 20.19万
  • 项目类别:
Identifying driver non-coding alterations in metastatic prostate cancer from tumor and cell-free DNA
从肿瘤和游离 DNA 中识别转移性前列腺癌的驱动非编码改变
  • 批准号:
    9720173
  • 财政年份:
    2020
  • 资助金额:
    $ 20.19万
  • 项目类别:

相似国自然基金

缺氧诱导因子(HIF)-2α转录抑制树突状细胞CD36表达减轻肾脏缺血再灌注损伤的机制
  • 批准号:
    82370751
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
辅酶A类代谢中间产物参与组蛋白表观遗传修饰调控肝细胞代谢网络对高油脂营养应答的机制研究
  • 批准号:
    91957110
  • 批准年份:
    2019
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划
用dsDNA微阵列筛选NF-κB DNA靶点及靶基因
  • 批准号:
    60871014
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
新的膀胱癌特异基因UCA1在膀胱癌高表达的分子机理
  • 批准号:
    30801325
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Predicting transcriptional signatures and tumor subtypes from circulating tumor DNA
从循环肿瘤 DNA 预测转录特征和肿瘤亚型
  • 批准号:
    10487475
  • 财政年份:
    2021
  • 资助金额:
    $ 20.19万
  • 项目类别:
Predicting transcriptional signatures and tumor subtypes from circulating tumor DNA
从循环肿瘤 DNA 预测转录特征和肿瘤亚型
  • 批准号:
    10305561
  • 财政年份:
    2021
  • 资助金额:
    $ 20.19万
  • 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
  • 批准号:
    10679089
  • 财政年份:
    2019
  • 资助金额:
    $ 20.19万
  • 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
  • 批准号:
    10460247
  • 财政年份:
    2019
  • 资助金额:
    $ 20.19万
  • 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
  • 批准号:
    9766023
  • 财政年份:
    2019
  • 资助金额:
    $ 20.19万
  • 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
  • 批准号:
    10020786
  • 财政年份:
    2019
  • 资助金额:
    $ 20.19万
  • 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
  • 批准号:
    10242125
  • 财政年份:
    2019
  • 资助金额:
    $ 20.19万
  • 项目类别:
Molecular Signatures of Melanoma: Predicting Response to Therapy & Targeting
黑色素瘤的分子特征:预测治疗反应
  • 批准号:
    7464263
  • 财政年份:
    2008
  • 资助金额:
    $ 20.19万
  • 项目类别:
Molecular Signatures of Melanoma: Predicting Response to Therapy & Targeting
黑色素瘤的分子特征:预测治疗反应
  • 批准号:
    8130558
  • 财政年份:
  • 资助金额:
    $ 20.19万
  • 项目类别:
Molecular Signatures of Melanoma: Predicting Response to Therapy & Targeting
黑色素瘤的分子特征:预测治疗反应
  • 批准号:
    8380218
  • 财政年份:
  • 资助金额:
    $ 20.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了