Quorum-sensing mediated communication between pandemic Vibrio cholerae and phage VP882

群体感应介导大流行霍乱弧菌和噬菌体 VP882 之间的通讯

基本信息

  • 批准号:
    10601559
  • 负责人:
  • 金额:
    $ 6.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Bacteria are bombarded by infecting viruses, called phages, in natural habitats. Upon infection of a host, phages must undertake one of two lifestyles: lysogeny where the phage remains in the host and is passed down to offspring, or lysis where the phage replicates, kills the host, and spreads to new cells. Phages have been thought to transition from lysogeny to lysis exclusively in response to host stress and DNA damage. New research from the Bassler laboratory has revealed that phages can monitor host communication molecules, called autoinducers. In a process called quorum sensing, bacteria produce, release, and detect autoinducers, and in response, orchestrate group behaviors. Quorum-sensing-responsive phages detect host-produced autoinducers and exploit the information they garner to drive their lysis-lysogeny lifestyle transitions. These recent findings position me to discover how phages manipulate bacterial hosts and the consequences to the host, to the multi- species bacterial community of which the host is a member, and to the eukaryotic host in which all the entities reside. The overarching goal of my research is to define how cross-domain communication between vibriophage VP882, the first phage discovered to “eavesdrop” on quorum sensing, and its host, the global pathogen Vibrio cholerae, launches the phage lytic cycle. Using a combination of genetic, biochemical, and structural approaches, I will identify the molecular mechanisms underlying this host-phage chemical communication process. First, I will learn skills in bacterial genetics from experts in the Bassler laboratory and conduct a genetic screen to identify the repressor of the quorum-sensing-induced phage lytic cycle. Second, I will use biochemical methods to quantitatively characterize interactions between two key signaling components in the quorum- sensing-induced phage lysis pathway. Lastly, I will rely on my background in structural biology to solve the structures of these same signaling components, individually and in complex, enabling atomic-level-resolution understanding of the interactions required for the phage to undergo lifestyle transitions. The ideal outcomes of my research are a mechanistic understanding of inter-domain chemical communication and new possibilities for development of phage therapies. Honing my skills in bacterial genetics, protein biochemistry, and macromolecular crystallography over the course of my postdoctoral training will enable me to launch an independent research program at a top-tier research institution.
项目总结/摘要 在自然环境中,细菌受到感染性病毒的轰击。在感染宿主后, 必须采取两种生活方式之一:溶原性,其中噬菌体留在宿主体内,并传递给 噬菌体复制、杀死宿主并传播到新细胞的裂解。噬菌体一直被认为 从溶原性到溶解性的转变仅仅是对宿主应激和DNA损伤的反应。的新研究 Bassler实验室已经发现,Escherichia coli可以监控宿主的通讯分子, 自体诱导物。在一个称为群体感应的过程中,细菌产生,释放和检测自动诱导物,并在 回应,协调群体行为。群体感应反应性DNA检测宿主产生的自诱导物 并利用他们收集的信息来驱动他们的溶细胞-溶原性生活方式的转变。这些最新的发现 我的位置,以发现如何操纵细菌宿主和后果的主机,以多- 物种细菌群落,其中宿主是一个成员,并真核宿主,其中所有实体 居住。我研究的首要目标是确定弧菌噬菌体之间的跨域通信 VP 882,发现的第一个“窃听”群体感应的噬菌体,及其宿主,全球病原体弧菌 霍乱毒素启动噬菌体裂解周期。综合运用遗传、生化和结构 方法,我将确定这种宿主-噬菌体化学通讯的分子机制 过程首先,我将向巴斯勒实验室的专家学习细菌遗传学方面的技能,并进行遗传学研究。 筛选以鉴定群体感应诱导的噬菌体裂解周期的阻遏物。第二,我会用生化 定量表征群体中两个关键信号组分之间相互作用的方法, 感测诱导的噬菌体裂解途径。最后,我将依靠我在结构生物学方面的背景来解决这个问题。 这些相同的信号成分的结构,单独和复杂,使原子级分辨率 了解噬菌体经历生活方式转变所需的相互作用。理想的结果 我的研究是对域间化学通讯的机械理解, 噬菌体疗法的发展。磨练我在细菌遗传学,蛋白质生物化学, 在我的博士后培训过程中,大分子晶体学将使我能够开展一项 在顶级研究机构的独立研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grace Beggs其他文献

Grace Beggs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Engineered bacteriophages as biosensors for the rapid diagnosis of bacterial infection
工程噬菌体作为生物传感器,用于快速诊断细菌感染
  • 批准号:
    2879026
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Studentship
Designable, Orientable, and Responsive Photonic Crystals Based on Bacteriophages
基于噬菌体的可设计、可定向、响应灵敏的光子晶体
  • 批准号:
    23KJ0533
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
From cells to communities: The multi-scale impacts of bacteriophages in the gut microbiome
从细胞到群落:噬菌体对肠道微生物组的多尺度影响
  • 批准号:
    10714109
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
Bacteriophages in the ageing gut as targeted therapeutics
老化肠道中的噬菌体作为靶向治疗
  • 批准号:
    2893971
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Studentship
AI mining of the bacteriophages metagenome
噬菌体宏基因组的人工智能挖掘
  • 批准号:
    2890966
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Studentship
Understanding cell surface recognition by bacteriophages to engineer novel therapeutics targeting Enterococcus cecorum, an emerging poultry pathogen
了解噬菌体的细胞表面识别,以设计针对盲肠肠球菌(一种新兴的家禽病原体)的新型疗法
  • 批准号:
    2881108
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Studentship
Demystifying virus-host interactions in Clostridioides difficile through genetic engineering of bacteriophages and the bacterial S-layer
通过噬菌体和细菌 S 层的基因工程揭开艰难梭菌中病毒与宿主相互作用的神秘面纱
  • 批准号:
    494839
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Operating Grants
Involvement of Bacteriophages in the Formation of Oral Bacterial Flora by Phageome Analysis
通过噬菌体分析了解噬菌体参与口腔细菌菌群的形成
  • 批准号:
    23H03074
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bacteriophages against surgical site infections
噬菌体对抗手术部位感染
  • 批准号:
    10070793
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Collaborative R&D
Bacteriophages as key players in bacterial adaptation to the human gut
噬菌体是细菌适应人类肠道的关键参与者
  • 批准号:
    2748665
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了