Biophysical basis for enzyme mediated deglycation in protein repair

蛋白质修复中酶介导的去糖化的生物物理学基础

基本信息

  • 批准号:
    10601090
  • 负责人:
  • 金额:
    $ 41.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Organisms across all domains of life decorate their protein molecules with an incredible diversity of chemical modifications. Modifications on proteins are critical for their function, affecting protein structure, stability, and interaction partners. Many of the proteins and the enzymes that read, write, and erase these modifications are closely tied to human diseases ranging from neurological disorders to cancer to type 2 diabetes. While these proteins and pathways can be targets to treat these diseases, we lack a high-resolution, mechanistic understanding of how the cell installs, recognizes, and leverages certain post-translational modifications, specifically ubiquitination and spontaneous, non-enzymatic modifications. Our lab is working to understand how protein-protein interactions dynamically regulate post-translational modifications to alter proteome landscape and impact human disease. Protein glycation is an understudied post-translational modification that arises when a sugar covalently attaches to a primary amine. This process occurs spontaneously under normal physiological conditions and is a bio-marker in aging and the development, or worsening, of diseases such as diabetes, Alzheimer's disease, osteoarthritis, and atherosclerosis. Early glycation events are reversible and represent one of the few protein repair mechanisms in the cell. Deglycation is mediated by an unusual “hybrid” kinase/deglycase called Fructosamine-3-kinase (FN3K). FN3K facilitates the removal of protein-linked glycans by directly phosphorylating the attached sugar and destabilizing the sugar-protein linkage. FN3K and FN3K homologs are found in all branches of the tree of life. The glycation of intracellular proteins is not well studied, yet the conservation of FN3K and FN3K-related proteins underscores an important biological role for these enzymes. In this project, my lab will use a multidisciplinary approach, including techniques and expertise in structural biology, enzymology, and systems biology, to address sharply focused mechanistic questions regarding FN3K-mediate protein repair. We hypothesize that an improved mechanistic understanding of FN3K will reveal new biological insight into this ancient repair process, and that we can leverage this insight to better diagnose and treat diseases associated with elevated glycation. In order to distinguish our contributions from those of others, we will integrate reductionist and global approaches to develop a deeper and more complete understanding of the regulation and repair of glycated proteins. Over the five-year funding period, the goals of this project are to: (i) determine the structural and biophysical basis for FN3K-mediated protein repair (ii) systematically characterize the binding kinetics and enzymatic activity of FN3K and FN3K-RP on diverse substrates; (iii) identify sites-specific FN3K deglycation sites and their potential cross-talk with other PTMs. The successful completion of this work will establish the molecular mechanisms that govern the protein deglycation repair process and will ultimately provide needed breakthroughs in biomedical research.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Binning其他文献

Jennifer Binning的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Binning', 18)}}的其他基金

The role of HPV E1 in regulating the NRF2-KEAP1 pathway
HPV E1在调节NRF2-KEAP1通路中的作用
  • 批准号:
    10646778
  • 财政年份:
    2023
  • 资助金额:
    $ 41.18万
  • 项目类别:
Biophysical basis for enzyme mediated deglycation in protein repair
蛋白质修复中酶介导的去糖化的生物物理学基础
  • 批准号:
    10276570
  • 财政年份:
    2021
  • 资助金额:
    $ 41.18万
  • 项目类别:
Biophysical basis for enzyme mediated deglycation in protein repair
蛋白质修复中酶介导的去糖化的生物物理学基础
  • 批准号:
    10415210
  • 财政年份:
    2021
  • 资助金额:
    $ 41.18万
  • 项目类别:
Biophysical basis for enzyme mediated deglycation in protein repair
蛋白质修复中酶介导的去糖化的生物物理学基础
  • 批准号:
    10798655
  • 财政年份:
    2021
  • 资助金额:
    $ 41.18万
  • 项目类别:
Evolution of the Vif E3 Ubiquitin Ligase
Vif E3 泛素连接酶的演变
  • 批准号:
    9233738
  • 财政年份:
    2016
  • 资助金额:
    $ 41.18万
  • 项目类别:
Evolution of the Vif E3 Ubiquitin Ligase
Vif E3 泛素连接酶的演变
  • 批准号:
    9437667
  • 财政年份:
    2016
  • 资助金额:
    $ 41.18万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 41.18万
  • 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
  • 批准号:
    400097
  • 财政年份:
    2019
  • 资助金额:
    $ 41.18万
  • 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
  • 批准号:
    19K09017
  • 财政年份:
    2019
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
  • 批准号:
    18K09531
  • 财政年份:
    2018
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
  • 批准号:
    9766994
  • 财政年份:
    2018
  • 资助金额:
    $ 41.18万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 41.18万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 41.18万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 41.18万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9925164
  • 财政年份:
    2016
  • 资助金额:
    $ 41.18万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9345997
  • 财政年份:
    2016
  • 资助金额:
    $ 41.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了