The role of CENP-A in the response to DNA double-strand breaks
CENP-A 在 DNA 双链断裂反应中的作用
基本信息
- 批准号:10605363
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-07 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Air PollutantsAneuploidyBUB1 geneCell Cycle ProgressionCellsCentromereChemicalsChromatinChromosome SegregationChromosome abnormalityChromosomesCompensationComplexDNA DamageDNA Double Strand BreakDNA RepairDNA damage checkpointDNA lesionDepositionDimensionsDouble Strand Break RepairEnvironmentEventExposure toFailureGoalsHeavy MetalsHistone H3HumanImmunofluorescence ImmunologicKinetochoresLesionMalignant NeoplasmsMammalian CellMediatingMediatorMicroscopicMicrotubulesMitosisMitoticModelingMolecularMonitorMusNaturePlayProteinsRadiationRegulationRoleShapesSignal TransductionSiteStressStructureTestingVariantcentromere protein Aenvironmental agentenvironmental mutagensexperimental studyhigh risknoveloverexpressionpreservationrecruitresponse
项目摘要
Exposure of cells to environmental agents, such as radiation, heavy metals, air pollutants and mutagenic
chemicals, generates DNA double-strand breaks (DSBs) and other chromosomal lesions. Such
environmentally induced chromosomal lesions are tolerated and ultimately eliminated via a complex,
conserved mechanism termed the DNA damage response (DDR). Our long-term goal is to elucidate the
molecular crosstalk between kinetochore-mediated mitotic regulation and the DDR. In particular, we strive to
define the role of centromere protein A (CENP-A), a histone H3 variant, as a key mediator of this crosstalk.
CENP-A is a constituent of the centromere-specific chromatin essential for the assembly of the kinetochore, a
proteinaceous structure that provides the connection between chromosomes and spindle microtubules. CENP-
A plays a crucial role in centromere identity and kinetochore assembly. Importantly, we and others have made
the surprising finding that CENP-A also localizes to DNA DSBs in normal and immortalized human and mouse
cells. The available evidence suggests that CENP-A functions in DSB repair, but the mechanism by which it
accomplishes this feat remains to be determined. We hypothesize that CENP-A nucleates the formation of a
pseudo/kinetochore at DSB sites to activate the spindle checkpoint and delay cell cycle progression when DNA
damage repair fails. We propose the following Specific Aims to test our hypothesis: Aim 1: Determine the
structure and function of the complex formed by CENP-A, BUB1, and other proteins at DSBs. Our
working hypothesis is that a CENP-A-containing complex forms a “pseudo kinetochore” that assembles at
DSBs whereupon it activates the spindle checkpoint (which monitors kinetochore-microtubule attachment)
when DDR fails to eliminate the DNA lesions in a timely fashion as other centromere proteins (CENP-N,
CENP-T, and CENP-U) and BUB1, a spindle checkpoint component, are recruited to DSBs. We will
systematically examine whether known kinetochore proteins are localized at the DSB sites by
immunofluorescence (IF) microscopic analysis. Aim 2: Assess the role of the spindle checkpoint in
delaying cell cycle progression in DSB repair. We hypothesize that DSB-induced pseudo/kinetochores can
activate the spindle checkpoint to cause a delay in mitosis, allowing DNA repair. We will first determine
whether spindle checkpoints are localized at DBS sites by IF. We will determine whether the mitotic delay
induced by DSBs is reliant on spindle checkpoint components when the DNA damage checkpoint activities are
absent. Aim 3: Examine whether neocentromeres are formed upon failure of DNA repair. Occasionally,
CENP-A-containing loci may become intact neocentromeres, which would rescue chromosome fragments
without centromeres by generating new chromosomes with neocentromeres as a survival mechanism. We will
screen for neocentromeres after DSB induction when DNA repair or the DNA damage checkpoint is
compromised, and we will examine whether neocentromere formation increases under these conditions.
细胞暴露于环境因子,如辐射、重金属、空气污染物和诱变剂
化学物质,产生DNA双链断裂(DSB)和其他染色体损伤。等
环境诱导的染色体损伤是耐受的并最终通过复合物消除,
这种保守机制称为DNA损伤反应(DDR)。我们的长期目标是阐明
动排介导的有丝分裂调节和DDR之间的分子串扰。特别是,我们努力
定义着丝粒蛋白A(CENP-A),一种组蛋白H3变体,作为这种串扰的关键介质的作用。
CENP-A是着丝粒特异性染色质的一种成分,对于着丝粒的组装至关重要,
连接染色体和纺锤体微管的蛋白质结构。CENP-
A在着丝粒身份和动粒组装中起着至关重要的作用。重要的是,我们和其他人
令人惊讶的发现是CENP-A也定位于正常和永生化的人和小鼠的DNA DSB
细胞现有证据表明CENP-A在DSB修复中起作用,但其作用机制尚不清楚。
完成这一壮举仍有待确定。我们假设CENP-A使一种
DSB位点的假/动粒激活纺锤体检查点并延迟细胞周期进程,
损坏修复失败。我们提出以下具体目标来检验我们的假设:目标1:确定
CENP-A、BUB 1和其他蛋白质在DSB形成的复合物的结构和功能。我们
工作假设是,含有CENP-A的复合物形成一个“假动粒”,
DSB,从而激活纺锤体检查点(监测着丝粒-微管附着)
当DDR不能像其它着丝粒蛋白那样及时消除DNA损伤时(CENP-N,
CENP-T和CENP-U)和BUB 1(纺锤体检查点组分)被募集到DSB。我们将
系统地检查已知的动粒蛋白是否位于DSB位点,
免疫荧光(IF)显微镜分析。目的2:评估纺锤体检查点在
延迟DSB修复中的细胞周期进展。我们假设DSB诱导的假/动粒可以
激活纺锤体检查点,导致有丝分裂延迟,允许DNA修复。我们将首先确定
纺锤体检查点是否通过IF定位在DBS位点。我们将确定是否有丝分裂延迟
当DNA损伤检查点活性被抑制时,DSB诱导的细胞凋亡依赖于纺锤体检查点成分。
无托叶目的3:检查新着丝粒是否在DNA修复失败后形成。偶尔,
含有CENP-A的位点可能成为完整的新着丝粒,这将拯救染色体片段
通过产生新的带有新着丝粒的染色体作为生存机制。我们将
当DNA修复或DNA损伤检查点被破坏时,在DSB诱导后筛选新着丝粒。
妥协,我们将检查是否新着丝粒形成增加在这些条件下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATSUMI KITAGAWA其他文献
KATSUMI KITAGAWA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATSUMI KITAGAWA', 18)}}的其他基金
The role of CENP-A in the response to DNA double-strand breaks
CENP-A 在 DNA 双链断裂反应中的作用
- 批准号:
10443414 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
CIMA (CASPASE-INDEPENDENT MITOTIC APOPTOSIS)
CIMA(不依赖CASPASE的有丝分裂凋亡)
- 批准号:
7601061 - 财政年份:2007
- 资助金额:
$ 23.25万 - 项目类别:
CIMA (CASPASE-INDEPENDENT MITOTIC APOPTOSIS)
CIMA(不依赖CASPASE的有丝分裂凋亡)
- 批准号:
7358133 - 财政年份:2006
- 资助金额:
$ 23.25万 - 项目类别:
Kinetochore Function and Cell Cycle Progression Revision
动粒功能和细胞周期进程修订
- 批准号:
7886875 - 财政年份:2003
- 资助金额:
$ 23.25万 - 项目类别:
Kinetochore Function and Cell Cycle Progression Revision
动粒功能和细胞周期进程修订
- 批准号:
7730160 - 财政年份:2003
- 资助金额:
$ 23.25万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别: