Translational regulation of tissue resident macrophages by GCN2
GCN2 对组织驻留巨噬细胞的翻译调节
基本信息
- 批准号:10611500
- 负责人:
- 金额:$ 47.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAdoptedAffectAmino AcidsAnimal ModelApoptosisBinding ProteinsBiochemicalBiomedical EngineeringBone MarrowCandidate Disease GeneCardiacCell physiologyCellsChIP-seqChicagoCollaborationsConsultationsDataDefectDevelopmentDiseaseEIF-2alphaErythroblastsErythrocytesErythroidErythrophagocytosisErythropoiesisEukaryotic Initiation FactorsFetal LiverGene ExpressionGenesGenetic TranscriptionGoalsHemeHigh Fat DietHomeostasisIn VitroInflammatoryKnock-in MouseKnock-outKnockout MiceKnowledgeLettersLife Cycle StagesLinkMacrophageMalignant NeoplasmsMammalian CellMechanical StressMediatingMemoryMessenger RNAModelingMolecularMusNutrientPathologicPathway interactionsPhagocytesPhagocytosisPhosphorylationPhosphotransferasesPhysiologicalPiezo 1 ion channelPlayPopulation HeterogeneityProcessProductionProkaryotic Initiation Factor-2Protein BiosynthesisProtein-Serine-Threonine KinasesRegulationResistanceResolutionRibosomesRoleScientistSeminalSignal PathwaySignal TransductionStressTechniquesTechnologyTestingTimeTissue EngineeringTissuesTransgenic MiceTranslation InitiationTranslational RegulationTranslationsUniversitiesUp-Regulationactivating transcription factor 4biological adaptation to stresscell typeexperienceexperimental studygene networkgenome-widehuman diseasein vivoinhibitorinnovationinventionmRNA Translationmechanical forcemouse modelnovelpathogenpredictive modelingprogramsresponsetissue repairtranscription factortranslatome
项目摘要
SUMMARY
mRNA translation, or protein synthesis, is a fundamental cellular process that can be dysregulated in several
human diseases. Macrophages are heterogeneous populations that are present in most tissues and adopt
tissue specific functions. The role of mRNA translational control in macrophages and in regards to their tissue
specific functions is not well understood. The broad goal of the proposed studies is to understand how
dysregulation of mRNA translation controls tissue-resident macrophage function during stress. The specific
goals of this study are to identify how GCN2 (general control nonderepressible 2)-dependent translational
control in macrophages affects macrophage function in RBC production and clearance and to uncover the
genes mediating this effect. The GCN2 is a serine/threonine-protein kinase that belongs to a signaling network
that coordinates cellular response to nutrient stress through translational regulator eIF2 (Eukaryotic translation
initiation factor 2). GCN2 senses amino acid levels and phosphorylates eIF2 in response to amino acid
deficiency. p-eIF2 inhibits global mRNA translation but paradoxically stimulates the translation of a subset of
key stress-response genes such as ATF4 (Activating Transcription Factor 4). Upregulation of stress-response
genes in response to GCN2/eIF2 signaling activates a transcription program that helps the cells to overcome
unfavorable conditions or undergo apoptosis. GCN2 function has been previously linked to important
physiological and pathological conditions such as memory formation, cancer and inflammatory diseases.
However, the role of GCN2 in regulating tissue-resident macrophages and their functions in RBC production
and clearance has not been characterized. Our current model suggests that GCN2 controls RBC production
and clearance during stress through regulation of mRNA translation in macrophages. Therefore, we propose
the following aims to achieve our goals: First we will determine the importance of GCN2 in RBC clearance by
macrophages (Aim 1) and define molecular mechanisms through which GCN2 impact this process. Next, we
will elucidate how GCN2 controls RBC maturation and production by macrophages (Aim 2). Finally, we will
examine how mechanical force sense by macrophage through GCN2 (Aim 3). To achieve these goals we will
use transgenic mice lacking GCN2 or carrying phospho-resistant eIF2 in macrophages and state-of-art
technology to study mRNA translation at genome-wide level. Our mouse models and in vivo and in vitro
experiments will rigorously assess the central role of macrophages in development of GCN2-dependent
defects during stress. Our genome-wide approach and in vitro functional analysis of selected targets will
discover novel translationally regulated genes downstream of GCN2 that play important roles in macrophage
regulation of RBC production during stress.
总结
mRNA翻译或蛋白质合成是一个基本的细胞过程,在几种情况下可能会失调。
人类疾病。巨噬细胞是存在于大多数组织中的异质群体,
组织特异性功能。mRNA翻译控制在巨噬细胞及其组织中的作用
具体功能还不清楚。拟议研究的主要目标是了解如何
mRNA翻译的失调控制应激期间组织驻留的巨噬细胞功能。具体
本研究的目的是确定GCN 2(一般控制非去阻遏蛋白2)依赖性翻译
控制巨噬细胞影响巨噬细胞的功能,在红细胞的生产和清除,并揭示
介导这种效应的基因。GCN 2是属于信号网络的丝氨酸/苏氨酸蛋白激酶
通过翻译调节因子eIF 2(真核翻译)协调细胞对营养胁迫的反应
起始因子2)。GCN 2传感氨基酸水平并响应氨基酸水平磷酸化eIF 2
缺陷p-eIF 2抑制整体mRNA的翻译,但矛盾的是,它刺激了一个子集的翻译。
关键的应激反应基因,如ATF 4(激活转录因子4)。应激反应上调
响应GCN 2/eIF 2信号的基因激活了一个转录程序,帮助细胞克服
不利的条件或经历凋亡。GCN 2功能以前曾与重要的
生理和病理状况,如记忆形成、癌症和炎性疾病。
然而,GCN 2在调节组织驻留的巨噬细胞中的作用及其在RBC产生中的功能,
清除率尚未确定。我们目前的模型表明,GCN 2控制红细胞的产生,
以及通过调节巨噬细胞中的mRNA翻译在应激期间清除。所以我们提出
为了达到我们的目标,我们将首先通过以下方法确定GCN 2在RBC清除中的重要性:
巨噬细胞(目标1),并定义GCN 2影响这一过程的分子机制。接下来我们
将阐明GCN 2如何控制红细胞成熟和巨噬细胞的生产(目的2)。最后我们将
通过GCN 2检测巨噬细胞对机械力的感受(目的3)。为了实现这些目标,我们将
使用缺乏GCN 2或在巨噬细胞中携带磷酸化抗性eIF 2的转基因小鼠,
在全基因组水平上研究mRNA翻译的技术。我们的小鼠模型以及体内和体外
实验将严格评估巨噬细胞在GCN 2依赖性肿瘤发生中的中心作用。
压力下的缺陷。我们的全基因组方法和选定靶点的体外功能分析将
发现在巨噬细胞中起重要作用的GCN 2下游的新的免疫调节基因
在应激期间调节RBC产生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soroush Tahmasebi其他文献
Soroush Tahmasebi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soroush Tahmasebi', 18)}}的其他基金
Translational regulation of tissue resident macrophages by GCN2
GCN2 对组织驻留巨噬细胞的翻译调节
- 批准号:
10417760 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
Investment Accelerator














{{item.name}}会员




