Depression, Isolation, and Social Connectivity Online (DISCO)
抑郁、孤立和在线社交联系 (DISCO)
基本信息
- 批准号:10612642
- 负责人:
- 金额:$ 189.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2025-09-08
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeBehaviorBlack raceCOVID-19COVID-19 impactCOVID-19 pandemicCensusesCessation of lifeCharacteristicsCollaborationsCommunitiesComputing MethodologiesContainmentDataData AnalysesData SetDepressed moodDiseaseElderlyElementsEnrollmentHispanicHouseholdIndividualInformaticsInternetInterventionInvestigationKnowledgeLonelinessLongevityMajor Depressive DisorderMeasuresMental DepressionMental HealthMethodsMood DisordersNatureOutcomePatient Self-ReportPersonsPoliciesPolicy AnalysisPopulationRiskRisk FactorsSARS-CoV-2 infectionSchoolsScientistSeriesSocial BehaviorSocial ImpactsSocial InteractionSocial NetworkSocial isolationSocial supportSubgroupSurveysTimeUnderserved PopulationUnited StatesVariantVirusVulnerable PopulationsWorkbehavior measurementcollegecoronavirus diseasedepressive symptomsdesigndisabilityeconomic impactinnovationminority communitiesmultidisciplinarynovelpandemic diseasepower analysisremote interactionresponsesocialsocial mediastressorunderserved communityvulnerable communityyoung adult
项目摘要
Social isolation represents a risk factor for major depression across the lifespan. The COVID-19 pandemic has
contributed to unprecedented disruption in social networks, as a result both of the disease itself and the
measures required to contain it. Vulnerable and underserved communities have been particularly impacted in
both of these regards, with greater rates of COVID-19 infection as well as greater economic and social impact
of closures and restrictions. It is not surprising, then, that rates of major depressive symptoms in the United
States have approached levels 3 to 4 times those observed before the pandemic. Beginning to address the rise
of social disconnection and its contribution to depression requires a better understanding of the aspects of social
networks most disrupted by the pandemic, and how they relate to depression, especially among individuals in
vulnerable communities. Identifying targets for intervention also requires understanding how online social
behavior may compensate for, or exacerbate, effects of social disconnection. Furthermore, it is necessary to
understand how external factors in a community such as containment policies may contribute to or moderate
social disconnection and depression. To address these critical questions, this study will use data from the Covid
States Project, a 50-state survey conducted approximately every 8 weeks since April 2020, which has enrolled
more than 260,000 unique individuals, including 125,000 from households earning less than $50,000 per year.
Beyond symptoms of depression, the survey asks detailed questions about social networks and social support,
as well as online activity, impact of COVID-19, and a range of other topics. The first aim of the study will
characterize, in well-powered analysis of individual subgroups, the relationship between specific aspects of
social networks and depressed mood, and identify features that may moderate these effects. In aim 2, using an
innovative browser extension, the study will characterize online behavior among 1200 individuals completing the
survey. In aim 3, the study will integrate survey data with longitudinal data at the state and census tract level
regarding pandemic containment policies, mobility, and COVID-19 cases and death. These latter two aims will
provide a novel understanding of how online behavior, and external factors, impact social networks and moderate
their relationship with depression. The study will build on a highly productive collaboration for the past 2 years
between the PI, with expertise in informatics methods for studying mood disorders, and the Northeastern PI, a
computational social scientist with expert in large-scale surveys and investigation of social networks. The
consultants, who have worked closely with the PIs on the survey, bring additional expertise in survey design and
analysis, investigation of time series data including mobility data, and policy analysis. The study will identify
targets for interventions to address social disconnection and its impact on depression, particularly among
vulnerable populations, providing critical guidance regarding where to focus such interventions.
社会孤立是一生中患重度抑郁症的危险因素。 COVID-19 大流行已
由于疾病本身和社会的影响,对社交网络造成了前所未有的破坏。
所需采取的遏制措施。弱势群体和服务不足的社区受到的影响尤其严重
在这两方面,COVID-19 感染率更高,经济和社会影响更大
的关闭和限制。那么,美国严重抑郁症状的发生率就不足为奇了。
各州的水平已接近大流行前水平的 3 至 4 倍。开始解决上升问题
社会脱节及其对抑郁症的影响需要更好地了解社会脱节的各个方面
受大流行影响最严重的网络,以及它们与抑郁症的关系,尤其是在以下地区的个人中:
弱势社区。确定干预目标还需要了解在线社交如何
行为可能会弥补或加剧社会脱节的影响。此外,有必要
了解社区中的外部因素(例如遏制政策)如何促进或缓和
社会脱节和抑郁。为了解决这些关键问题,本研究将使用来自 Covid 的数据
States Project,自 2020 年 4 月以来大约每 8 周进行一次 50 个州的调查,已招募
超过 260,000 名独特个人,其中 125,000 名来自年收入低于 50,000 美元的家庭。
除了抑郁症状之外,调查还询问了有关社交网络和社会支持的详细问题,
以及在线活动、COVID-19 的影响以及一系列其他主题。该研究的第一个目标是
通过对各个亚组的有力分析,描述特定方面之间的关系
社交网络和抑郁情绪之间的关系,并找出可能缓和这些影响的特征。在目标 2 中,使用
创新的浏览器扩展程序,该研究将描述 1200 名完成这项研究的人的在线行为
民意调查。在目标 3 中,该研究将整合调查数据与州和人口普查区层面的纵向数据
关于大流行遏制政策、人员流动以及 COVID-19 病例和死亡。后两个目标将
提供对在线行为和外部因素如何影响社交网络和适度的新理解
他们与抑郁症的关系。该研究将建立在过去两年高效合作的基础上
PI 拥有研究情绪障碍的信息学方法方面的专业知识,而东北 PI 则拥有
计算社会科学家,擅长大规模调查和社交网络调查。这
顾问在调查中与 PI 密切合作,带来了调查设计方面的额外专业知识和
分析、时间序列数据调查(包括流动性数据)和政策分析。该研究将确定
解决社会脱节及其对抑郁症影响的干预措施目标,特别是在
弱势群体,为此类干预措施的重点提供关键指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROY H. Perlis其他文献
ROY H. Perlis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROY H. Perlis', 18)}}的其他基金
Characterization of schizophrenia liability genes in models of human microglial synaptic pruning
人类小胶质细胞突触修剪模型中精神分裂症易感基因的表征
- 批准号:
10736092 - 财政年份:2023
- 资助金额:
$ 189.38万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10393687 - 财政年份:2021
- 资助金额:
$ 189.38万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10580741 - 财政年份:2021
- 资助金额:
$ 189.38万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10211310 - 财政年份:2021
- 资助金额:
$ 189.38万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
10614930 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
- 批准号:
10312110 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
9981011 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
- 批准号:
10064583 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
10392927 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
Natural language processing for characterizing psychopathology
用于表征精神病理学的自然语言处理
- 批准号:
9254614 - 财政年份:2016
- 资助金额:
$ 189.38万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 189.38万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 189.38万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 189.38万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 189.38万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 189.38万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 189.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 189.38万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 189.38万 - 项目类别:
Research Grants