Data-driven subtyping in major depressive disorder

重度抑郁症的数据驱动亚型

基本信息

  • 批准号:
    10393687
  • 负责人:
  • 金额:
    $ 77.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-16 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Abstract Major depressive disorder contributes substantially to morbidity, mortality, and health care cost. Standard treatments are ineffective for up to a third of patients, so new treatment options are needed along with strategies to make more effective use of existing treatments. However, progress in expanding therapeutic options has been hindered by heterogeneity in clinical presentation and course of depression. In other disorders such as inflammatory bowel disease, cancer, and dementia, identifying disease subtypes has led to therapeutic discoveries. In major depressive disorder, efforts to identify subtypes based on clinical observation have yielded limited success, primarily because of the lack of availability of adequate cohorts for replication, and because those features most apparent to clinicians may not be the most relevant for differentiating subgroups. Efforts to leverage large electronic health record data sets for subtyping address some of these challenges, but standard approaches may not yield human-interpretable features nor those with value in prediction. The investigators have developed methods for engineering features that balance utility in prediction with interpretability. Preliminary work by the investigators during a year of R56 support yielding 4 publications demonstrates that this approach indeed yields coherent topics without sacrificing predictive validity; electronic health records contain meaningful data that facilitates identification of interpretable patient subgroups. The present study draws on very large cohorts of individuals with major depression, defined by a validated algorithm, in electronic health records from two health systems. It will first apply methods developed by the investigators to identify MDD subtypes. These subtypes will then be examined in terms of predictive validity as well as interpretability by clinicians. The study builds on a productive collaboration between a team experienced in mood disorder phenotyping and clinical investigation, analysis of large-scale longitudinal electronic health records, and development and application of innovative methods in machine learning that yield interpretable models rather than black boxes. Data-driven disease subtyping will facilitate clinically useful risk stratification as well as biological study of mood disorders.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROY H. Perlis其他文献

ROY H. Perlis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROY H. Perlis', 18)}}的其他基金

Characterization of schizophrenia liability genes in models of human microglial synaptic pruning
人类小胶质细胞突触修剪模型中精神分裂症易感基因的表征
  • 批准号:
    10736092
  • 财政年份:
    2023
  • 资助金额:
    $ 77.2万
  • 项目类别:
Depression, Isolation, and Social Connectivity Online (DISCO)
抑郁、孤立和在线社交联系 (DISCO)
  • 批准号:
    10612642
  • 财政年份:
    2022
  • 资助金额:
    $ 77.2万
  • 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
  • 批准号:
    10580741
  • 财政年份:
    2021
  • 资助金额:
    $ 77.2万
  • 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
  • 批准号:
    10211310
  • 财政年份:
    2021
  • 资助金额:
    $ 77.2万
  • 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
  • 批准号:
    10614930
  • 财政年份:
    2019
  • 资助金额:
    $ 77.2万
  • 项目类别:
1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
  • 批准号:
    10312110
  • 财政年份:
    2019
  • 资助金额:
    $ 77.2万
  • 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
  • 批准号:
    9981011
  • 财政年份:
    2019
  • 资助金额:
    $ 77.2万
  • 项目类别:
1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
  • 批准号:
    10064583
  • 财政年份:
    2019
  • 资助金额:
    $ 77.2万
  • 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
  • 批准号:
    10392927
  • 财政年份:
    2019
  • 资助金额:
    $ 77.2万
  • 项目类别:
Natural language processing for characterizing psychopathology
用于表征精神病理学的自然语言处理
  • 批准号:
    9254614
  • 财政年份:
    2016
  • 资助金额:
    $ 77.2万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 77.2万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 77.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了