Elucidating novel features of visual processing and physiological connectivity from retina to primary visual cortex

阐明从视网膜到初级视觉皮层的视觉处理和生理连接的新特征

基本信息

项目摘要

Project Summary The use of stimuli with increasingly naturalistic properties has become critical to advance our understanding of vision. Many studies demonstrate that simple artificial stimuli (e.g. sinusoidal gratings and white noise) fail to engage nonlinearities that profoundly alter responses in the retina, lateral geniculate nucleus (LGN), and primary visual cortex (V1). A recent and striking example comes from the use of naturalistic ‘flow’ stimuli, which engage robust responses in V1 that are not predicted from responses to gratings. This gap in understanding motivates the development of a stimulus ensemble and analysis framework that produces a quantitative understanding of visual processing to increasingly naturalistic stimuli and the nonlinearities that they engage. Our objective is to understand how flow stimuli are processed from retina through visual cortex. To meet this goal, we will make neural population recordings in retina (Aims 1 & 3), LGN (Aims 1 & 3) and V1 (Aim 3) using matched experimental conditions and a unified theoretical/modeling framework to map the transformations that occur across these stages of visual processing. Our central hypothesis is that V1 transforms a discrete and heavily light-level-de- pendent retinal representation of natural stimuli into a continuous (uniform) representation that is relatively in- variant to changes in the mean luminance. This invariance places a strong constraint on the class of nonlineari- ties that transform retinal responses to those observed in LGN and V1. We test this hypothesis in three aims: (1) determine early visual processing (retina & LGN) of naturalistic flow stimuli; (2) develop an encoding manifold to capture the population activity at each processing stage and transforms from one stage to the next; (3) test the ability of the manifold description to predict the impact of light adaptation on processing flow stimuli from retina to V1. Aim 1 will yield a matched experimental dataset to an interesting and novel class of ecologically-relevant stimuli. Aim 2 will yield a quantitative framework by which to understand the transformations that occur between retina, LGN, and V1. Aim 3 will provide a platform for globally perturbing the output of the retina by switching from photopic to mesopic and scotopic conditions, and thereby compare predictions of our model to measured changes in LGN and V1 activity. The primary significance of this research is that it will provide a computationally and experimentally unified framework for understanding the transformations that occur in the processing of stim- uli across multiple stages of visual processing. The major innovations are (1) presenting visual stimuli for retinal recordings that are matched to eye movements and pupil dynamics in alert animals; (2) creating a novel analysis framework that captures the responses of neurons at all three levels and the inter-level transformations to in- creasingly complex stimuli; (3) utilizing light adaptation as a method of perturbing retinal output to test our model and the stability (invariance) of LGN and V1 responses to adapting retinal signals. The expected outcome is a data-driven model of the processing from retina to LGN and V1 that generalizes from starlight to sunlight.
项目摘要 使用具有越来越自然属性的刺激物对于促进我们对自然的理解已经变得至关重要。 视野许多研究表明,简单的人工刺激(如正弦光栅和白色噪声)不能 参与非线性,深刻地改变视网膜,外侧膝状体核(LGN),和主要的反应, 视觉皮层(V1)。最近一个引人注目的例子来自于使用自然主义的“流动”刺激, V1中的鲁棒响应不是从对光栅的响应预测的。这种理解上的差距促使 开发刺激集合和分析框架,以定量了解 视觉处理越来越自然的刺激和非线性,他们从事。我们的目标是 了解流刺激如何从视网膜通过视觉皮层处理。为了实现这一目标,我们将 使用匹配的实验方法记录视网膜(目的1和3)、LGN(目的1和3)和V1(目的3)中的神经群体记录, 条件和统一的理论/建模框架,以映射在这些条件下发生的转换 视觉处理的各个阶段。我们的中心假设是,V1转换一个离散的和沉重的轻级-de- 将自然刺激的悬垂视网膜表示转换为相对不连续的连续(均匀)表示, 平均亮度变化的变量。这种不变性对非线性类提出了强约束, 将视网膜反应转化为LGN和V1中观察到的反应。我们从三个方面来检验这一假设:(1) 确定自然流刺激的早期视觉处理(视网膜和LGN);(2)开发编码流形, 捕获每个处理阶段的人口活动,并从一个阶段转换到下一个阶段;(3)测试 流形描述预测光适应对视网膜处理流刺激的影响的能力 到V1。目标1将产生一个匹配的实验数据集,以一个有趣的和新颖的一类生态相关的 刺激。目标2将产生一个量化框架,通过该框架来理解 视网膜、LGN和V1。AIM 3将提供一个平台,通过切换全局扰动视网膜的输出 从明视觉到中间视觉和暗视觉条件,从而将我们模型的预测与测量的 LGN和V1活性的变化。这项研究的主要意义是,它将提供一个计算 和实验统一的框架,以了解在处理刺激过程中发生的转换, uli跨越视觉处理的多个阶段。其主要创新点是:(1)提供视觉刺激, 与警觉动物的眼球运动和瞳孔动态相匹配的记录;(2)创建新的分析 框架,捕捉所有三个级别的神经元的反应和级别间的转换, (3)利用光适应作为扰动视网膜输出的方法来测试我们的模型 以及LGN和V1响应对适应视网膜信号的稳定性(不变性)。预期的结果是 从视网膜到LGN和V1的处理的数据驱动模型,从星光到阳光。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning dynamic representations of the functional connectome in neurobiological networks
  • DOI:
    10.48550/arxiv.2402.14102
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luciano Dyballa;Samuel Lang;Alexandra Haslund-Gourley;Eviatar Yemini;Steven W. Zucker
  • 通讯作者:
    Luciano Dyballa;Samuel Lang;Alexandra Haslund-Gourley;Eviatar Yemini;Steven W. Zucker
Good continuation in 3D: the neurogeometry of stereo vision
  • DOI:
    10.3389/fcomp.2023.1142621
  • 发表时间:
    2024-01-08
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Bolelli,Maria Virginia;Citti,Giovanna;Zucker,Steven W.
  • 通讯作者:
    Zucker,Steven W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Darin Field其他文献

Gregory Darin Field的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Darin Field', 18)}}的其他基金

Visual signaling from retina to superior colliculus
从视网膜到上丘的视觉信号
  • 批准号:
    10608278
  • 财政年份:
    2023
  • 资助金额:
    $ 47.31万
  • 项目类别:
Elucidating novel features of visual processing and physiological connectivity from retina to primary visual cortex
阐明从视网膜到初级视觉皮层的视觉处理和生理连接的新特征
  • 批准号:
    10376246
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
Receptive field coordination across mosaics of diverse retinal ganglion cell types in the mammalian retina
哺乳动物视网膜中不同视网膜神经节细胞类型镶嵌体的感受野协调
  • 批准号:
    10596660
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
Receptive field coordination across mosaics of diverse retinal ganglion cell types in the mammalian retina
哺乳动物视网膜中不同视网膜神经节细胞类型镶嵌体的感受野协调
  • 批准号:
    10376332
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
Elucidating novel features of visual processing and physiological connectivity from retina to primary visual cortex
阐明从视网膜到初级视觉皮层的视觉处理和生理连接的新特征
  • 批准号:
    10229447
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
Receptive field coordination across mosaics of diverse retinal ganglion cell types in the mammalian retina
哺乳动物视网膜中不同视网膜神经节细胞类型镶嵌体的感受野协调
  • 批准号:
    10223315
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
Light Adaptation and Circadian Modulation
光适应和昼夜节律调节
  • 批准号:
    8910742
  • 财政年份:
    2014
  • 资助金额:
    $ 47.31万
  • 项目类别:
Light Adaptation and Circadian Modulation
光适应和昼夜节律调节
  • 批准号:
    9090123
  • 财政年份:
    2014
  • 资助金额:
    $ 47.31万
  • 项目类别:
Light adaptation and circadian modulation of parallel processing in retina
视网膜并行处理的光适应和昼夜节律调制
  • 批准号:
    8748643
  • 财政年份:
    2014
  • 资助金额:
    $ 47.31万
  • 项目类别:

相似海外基金

Targeting Type I IFN signaling to promote recovery following brain trauma in aged animals
靶向 I 型干扰素信号传导促进老年动物脑外伤后的恢复
  • 批准号:
    10300752
  • 财政年份:
    2022
  • 资助金额:
    $ 47.31万
  • 项目类别:
Targeting Type I IFN signaling to promote recovery following brain trauma in aged animals
靶向 I 型干扰素信号传导促进老年动物脑外伤后的恢复
  • 批准号:
    10618773
  • 财政年份:
    2022
  • 资助金额:
    $ 47.31万
  • 项目类别:
Development of a Frontier Magnetic Resonance (MR) Imaging Technology As a Tool for Visualization and Quantified Vascular-Feature Measurement for Use in Brain and Behavioral Research on Small Animals
开发前沿磁共振 (MR) 成像技术作为可视化和量化血管特征测量的工具,用于小动物的大脑和行为研究
  • 批准号:
    10384839
  • 财政年份:
    2022
  • 资助金额:
    $ 47.31万
  • 项目类别:
The effects of fear on the brain in wild animals
恐惧对野生动物大脑的影响
  • 批准号:
    563879-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 47.31万
  • 项目类别:
    University Undergraduate Student Research Awards
Head-mounted Photoacoustic Imaging of Deep-brain Neural Activities in Freely Behaving Animals
自由行为动物深脑神经活动的头戴式光声成像
  • 批准号:
    9924909
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
Probing brain network dynamics in freely behaving animals
探索自由行为动物的大脑网络动态
  • 批准号:
    RTI-2021-00094
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Research Tools and Instruments
ShEEP Request for Ultrafast Ultrasound for Brain Imaging in Freely Behaving Animals
ShEEP 请求使用超快超声波对自由行为的动物进行脑成像
  • 批准号:
    9908895
  • 财政年份:
    2019
  • 资助金额:
    $ 47.31万
  • 项目类别:
Bio-ultrasound pharmacy: micro-diaphragm development and its application to the brain of awake animals
生物超声药剂学:微隔膜开发及其在清醒动物大脑中的应用
  • 批准号:
    18K19794
  • 财政年份:
    2018
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Deciphering brain organisation through optogenetic manipulation in freely moving animals
通过光遗传学操作解读自由活动动物的大脑组织
  • 批准号:
    511913-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 47.31万
  • 项目类别:
    University Undergraduate Student Research Awards
Administrative Supplement: Anion channelrhodopsin-based viral tools to manipulate brain networks in behaving animals
行政补充:基于阴离子通道视紫红质的病毒工具可操纵行为动物的大脑网络
  • 批准号:
    9268890
  • 财政年份:
    2016
  • 资助金额:
    $ 47.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了