Receptive field coordination across mosaics of diverse retinal ganglion cell types in the mammalian retina
哺乳动物视网膜中不同视网膜神经节细胞类型镶嵌体的感受野协调
基本信息
- 批准号:10223315
- 负责人:
- 金额:$ 34.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAxonBrainCellsCodeDataData AnalysesDendritesDevelopmentDevelopmental ProcessEnsureEventExhibitsEyeGeneticGoalsImmunohistochemistryLeadLearningLocationMeasurementMeasuresMethodsMosaicismMotionNatureNeuronsNoiseOutcomeOutcomes ResearchPharmacologyPhysiologicalPopulationPositioning AttributeProcessPropertyRattusResearchRetinaRetinal Ganglion CellsRoleSamplingSensoryShapesSignal TransductionSpecificityStructureSynapsesTestingTimeLineTransgenic MiceVisionVisualVisual FieldsWorkbody positioncell typedark rearingexperienceexperimental studyganglion cellinnovationneural circuitnovelprogramsreceptive fieldresponsesight restorationtheoriesvisual processing
项目摘要
Throughout the brain, neural circuits are composed of diverse cell types. In the retina, cell types are spatially
organized into mosaics, in which the receptive fields of each type approximately tile space. This organization
ensures that the computations performed by each cell type occur uniformly across the visual field, with no gaps
or gluts in processing. This exquisite coordination within each cell type to uniformly cover space raises the question, ‘is there coordination across cell types?’ In general, this coordination could manifest as either a tendency
toward alignment, or anti-alignment, between two mosaics of receptive fields. Our central hypothesis is that
mosaics of receptive fields are intricately coordinated across retinal cell types and that this coordination reflects
fundamental organizing principles for how the retina processes natural scenes. We demonstrate with preliminary
data that across four retinal ganglion cell (RGC) types in the rat retina, mosaics of receptive fields are intricately
coordinated. Specifically, mosaics of ON and OFF RGC types that signal similar visual features are consistently
anti-aligned. Meanwhile, mosaics of OFF and OFF types that signal distinct features are also anti-aligned while
mosaics of ON and ON types are aligned. Finally, we show that across ON and OFF types that signal distinct
visual features the mosaics are statistically independent in their spatial arrangement. The objectives of this proposal are to build upon these observations to (1) understand the mechanisms that underlie inter-mosaic coordination (Aim 1), (2) determine how and when this coordination develops (Aim 2), and (3) to determine the significance of inter-mosaic coordination of visual as well as how extensively mosaics are coordinated across additional RGC types (Aim 3). This proposed research is significant because it will uncover an entirely new phenomenon in the vertebrate retina: inter-mosaic coordination across diverse cell types with diverse receptive field
properties. It will also reveal either new developmental mechanisms, or new roles for previously established
mechanisms in coordinating mosaics across RGC types. It will also make novel predictions for how downstream
neurons could pool over retinal inputs to produce orientation and direction tuned responses. Finally, this work is
significant because it extends the theoretical basis (e.g. ‘efficient coding theory’) of how we understand the organization of retinal processing. The proposed research is innovative because it applies a recently developed
analytical framework to large-scale population measurements of RGC receptive fields with the goal of understanding the contributions of cell position and synaptic specificity to inter-mosaic coordination. Furthermore, the
work is conceptually innovative because it shows receptive field mosaics are coordinated and identifies the benefits of coordination to vision. The expected outcome of this research is a novel set of mechanisms and developmental process that yield functional coordination across distinct cell types in the retina. We anticipate these
discoveries as being fundamental and impactful to understanding the retina and sensory processing
在整个大脑中,神经回路由不同类型的细胞组成。在视网膜中,细胞类型在空间上是
被组织成马赛克,其中每种类型的感受野大约有瓦片空间。这个组织
确保每种像元类型执行的计算在整个视野内均匀进行,没有间隙
或加工过程中的过量。每种细胞类型之间的这种巧妙的协调一致地覆盖了空间,这引发了一个问题:不同类型的细胞之间是否存在协调?一般来说,这种协调可能表现为一种趋势
朝向两个接受野的马赛克之间的对齐或反对齐。我们的中心假设是
感受野的马赛克在视网膜细胞类型中错综复杂地协调,这种协调反映了
视网膜如何处理自然场景的基本组织原则。我们通过初步演示
有数据表明,在大鼠视网膜的四种视网膜神经节细胞(RGC)中,感受野的嵌合体错综复杂
协调一致。具体地说,表示相似视觉特征的开启和关闭RGC类型的马赛克是一致的
反对齐。同时,表示不同特征的OFF和OFF类型的马赛克也是反对齐的
开和开类型的马赛克是对齐的。最后,我们展示了信号不同的开和关类型
视觉特征马赛克在其空间排列上是统计上独立的。这项建议的目的是在这些观察的基础上,(1)了解镶嵌间协调的机制(目标1),(2)确定这种协调如何以及何时发展(目标2),以及(3)确定视觉马赛克间协调的重要性,以及在其他研资局类型之间马赛克协调的广泛程度(目标3)。这项拟议的研究意义重大,因为它将揭示脊椎动物视网膜中的一种全新现象:具有不同感受野的不同细胞类型之间的镶嵌间协调
属性。它还将揭示新的发展机制,或先前建立的新角色
协调不同类型RGC的马赛克的机制。它还将对下游的情况做出新的预测
神经元可以聚集在视网膜输入上,产生方位和方向调节的反应。最后,这项工作是
因为它扩展了我们如何理解视网膜处理的组织的理论基础(例如,“有效编码理论”),因此意义重大。这项拟议的研究具有创新性,因为它应用了一种最近开发的
RGC感受野大规模群体测量的分析框架,目的是了解细胞位置和突触特异性对镶嵌间协调的贡献。此外,
这项工作在概念上是创新的,因为它表明了接受场马赛克是协调的,并确定了协调对视觉的好处。这项研究的预期结果是一套新的机制和发育过程,在视网膜中不同类型的细胞之间产生功能协调。我们期待着这些
这些发现对理解视网膜和感觉处理具有基础性和影响力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Darin Field其他文献
Gregory Darin Field的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Darin Field', 18)}}的其他基金
Visual signaling from retina to superior colliculus
从视网膜到上丘的视觉信号
- 批准号:
10608278 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Elucidating novel features of visual processing and physiological connectivity from retina to primary visual cortex
阐明从视网膜到初级视觉皮层的视觉处理和生理连接的新特征
- 批准号:
10376246 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Elucidating novel features of visual processing and physiological connectivity from retina to primary visual cortex
阐明从视网膜到初级视觉皮层的视觉处理和生理连接的新特征
- 批准号:
10613476 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Receptive field coordination across mosaics of diverse retinal ganglion cell types in the mammalian retina
哺乳动物视网膜中不同视网膜神经节细胞类型镶嵌体的感受野协调
- 批准号:
10596660 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Receptive field coordination across mosaics of diverse retinal ganglion cell types in the mammalian retina
哺乳动物视网膜中不同视网膜神经节细胞类型镶嵌体的感受野协调
- 批准号:
10376332 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Elucidating novel features of visual processing and physiological connectivity from retina to primary visual cortex
阐明从视网膜到初级视觉皮层的视觉处理和生理连接的新特征
- 批准号:
10229447 - 财政年份:2020
- 资助金额:
$ 34.8万 - 项目类别:
Light adaptation and circadian modulation of parallel processing in retina
视网膜并行处理的光适应和昼夜节律调制
- 批准号:
8748643 - 财政年份:2014
- 资助金额:
$ 34.8万 - 项目类别:
相似海外基金
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
BRAIN CONNECTS: Comprehensive regional projection map of marmoset with single axon and cell type resolution
大脑连接:具有单轴突和细胞类型分辨率的狨猴综合区域投影图
- 批准号:
10664170 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Rewiring the brain: remote-controlled axon guidance by magnetic nanoparticles to improve Parkinson's therapies
重新布线大脑:通过磁性纳米粒子远程控制轴突引导以改善帕金森氏症的治疗
- 批准号:
22K06430 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of Whole Brain Demyelination and Axon Damage Using High-resolution Magnetic Resonance Imaging
使用高分辨率磁共振成像表征全脑脱髓鞘和轴突损伤
- 批准号:
10626948 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Gene expression underlying serotonin axon regrowth in the adult mammalian brain
成年哺乳动物大脑中血清素轴突再生的基因表达
- 批准号:
9765426 - 财政年份:2018
- 资助金额:
$ 34.8万 - 项目类别:
In vivo imaging of astrocytes to investigate their functional and structural interactions with the blood brain barrier, immune cells and the demyelinating axon in the animal model of Multiple Sclerosis.
星形胶质细胞的体内成像,以研究其在多发性硬化症动物模型中与血脑屏障、免疫细胞和脱髓鞘轴突的功能和结构相互作用。
- 批准号:
279791496 - 财政年份:2015
- 资助金额:
$ 34.8万 - 项目类别:
Research Grants
Transcriptome-wide analysis of cytosolic polyadenylation events that mediate axon guidance: RNA processing helps wiring the brain
对介导轴突引导的胞质多腺苷酸化事件进行全转录组分析:RNA 处理有助于连接大脑
- 批准号:
253180514 - 财政年份:2014
- 资助金额:
$ 34.8万 - 项目类别:
Research Fellowships
AXON PLASTICITY AND RECOVERY OF FUNCTION AFTER TRAUMATIC BRAIN INJURY
脑外伤后轴突的可塑性和功能恢复
- 批准号:
8171190 - 财政年份:2010
- 资助金额:
$ 34.8万 - 项目类别:
Brain patterning and axon guidance
大脑模式和轴突引导
- 批准号:
394617-2010 - 财政年份:2010
- 资助金额:
$ 34.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
AXON PLASTICITY AND RECOVERY OF FUNCTION AFTER TRAUMATIC BRAIN INJURY
脑外伤后轴突的可塑性和功能恢复
- 批准号:
7955835 - 财政年份:2009
- 资助金额:
$ 34.8万 - 项目类别:














{{item.name}}会员




