Next Generation Temporal Interference Stimulation for Non-Invasive Neuromodulation
用于非侵入性神经调节的下一代时间干扰刺激
基本信息
- 批准号:10615485
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ExperimentsAnimalsBrainBrain regionCalibrationCellsCephalicChargeClinicalConsumptionDeep Brain StimulationDementiaDiseaseElectric StimulationElectrodesEpilepsyEvaluationFOS geneFrequenciesHealthHemorrhageHigh Frequency OscillationHumanImplanted ElectrodesIn VitroIndividualInfectionInflammationIon ChannelKnowledgeLeadLinkLocationMedicalMembraneMembrane PotentialsMental DepressionMethodsModelingMovement DisordersMuscleNerveNerve FibersNeuronsOpticsParkinson DiseasePenetrationPeriodicalsPeripheral Nervous SystemPhasePhysiologicalPropertyProtocols documentationRampReportingResearchResolutionRiskSignal TransductionSiteSpeedStimulusStrokeSurfaceTechnologyTestingTissuesTranslatingaddictionattenuationchronic painclinical applicationdesigndisease diagnosisdisease diagnosticelectric fieldexperimental studyimprovedin silicoin vivointerestneuralneuronal circuitryneuroregulationneurosurgeryneurotransmissionnext generationnovelperipheral painpredictive modelingpreventsimulationtool
项目摘要
Electrostimulation (ES) is a versatile and efficient tool for interrogating, altering, and manipulating neural
activities in health and disease. Deep brain ES delivered with implanted electrodes requires an elaborate
neurosurgery and carries risks of tissue damage, bleeding, stroke, infection, and inflammation. This limits the
use of deep brain ES for disease diagnostics and conditions that may not justify the risks.
Non-invasive targeted deep brain ES has long been a major quest, with countless potential applications.
The challenge is avoiding stimulation near surface electrodes, where the electric field is the strongest, while
stimulating at a depth by a (much) weaker electric field. One way to stimulate at a distance is by temporal
interference (TI) of two high-frequency sine waves delivered with a small frequency shift. The interference of
two such waves creates an amplitude-modulated stimulus at the target. Assumed demodulation of this signal
by neurons leads to their excitation at the modulation frequency.
Here, we introduce an entirely different concept of the temporal interference, based on (a) complete
cancellation of identical frequency carrier signals at the target, and (b) on the introduction of transient
distortions in one or both these signals. The distortions, such as a brief frequency or phase shift, will be
concealed by the strong periodic signal near the stimulating electrodes and will not lead to excitation at the
surface. However, these distortions will add up at the remote target location. They will stand out from the
“silent” background and will readily lead to excitation despite the attenuation of the electric field with distance.
We will perform mechanistic studies which support this next generation TI (NG-TI) stimulation paradigm. We
will continue with the design and experimental evaluation of different NG-TI protocols in vitro, in comparison
with the “standard” TI. We will systematically analyze the impact of TI stimulation parameters, to achieve
targeted tuning and modulation of individual neurons and neuronal circuitry. We hypothesize that NG-TI can be
improved for more focal stimulation, with much better penetration. It will have lower electric charge stimulation
threshold and enable better steerability than the standard TI. The most efficient NG-TI protocols will further be
validated by in vivo animal experiments. We will qualitatively compare targeting, possible off-site effects,
current consumption, and steerability of NG-TI and the standard TI. We will also define the feasibility and
model the electric field parameters for NG-TI stimulation at distances useful for medical applications. The
effects will be linked to dielectric and physiological properties of neurons and neural tissue, to build predictive
models for non-invasive deep brain stimulation in large animal and human trials. This project will lay the ground
to translate the NG-TI technology for disease diagnosis and treatment.
电刺激是一种询问、改变和操纵神经的通用而有效的工具
健康和疾病方面的活动。植入电极的深部大脑ES需要精心制作
神经外科手术,有组织损伤、出血、中风、感染和炎症的风险。这限制了
使用深部大脑ES进行疾病诊断和可能无法证明风险合理的情况。
非侵入性靶向深脑ES长期以来一直是一项重大的探索,具有无数的潜在应用。
挑战是避免表面电极附近的刺激,那里的电场最强,而
通过(远)较弱的电场在一定深度进行刺激。一种远距离刺激的方法是通过时间刺激
两个高频正弦波的干扰(TI),频率漂移很小。的干扰
两个这样的波在目标处产生幅度调制的刺激。假定解调该信号
由神经元导致它们在调制频率下兴奋。
在这里,我们引入了一个完全不同的时间干扰概念,基于(A)完全
在目标处消除相同的频率载波信号,以及(B)在引入瞬变时
这些信号中的一个或两个都有失真。失真,如短暂的频率或相移,将是
被刺激电极附近的强周期信号所隐藏,不会在
浮出水面。然而,这些失真将在远程目标位置累积起来。他们将脱颖而出
“无声”背景,即使电场随着距离的增加而衰减,也很容易导致激发。
我们将进行机制研究,以支持这种下一代TI(NG-TI)刺激范式。我们
将继续进行不同NG-TI方案的体外设计和实验评估,进行比较
与“标准”的TI。我们将系统地分析TI刺激参数的影响,以实现
有针对性地调谐和调制单个神经元和神经元电路。我们假设NG-TI可能是
改进为更多的焦点刺激,具有更好的穿透性。它会有更低的电荷刺激
门槛,并实现了比标准的TI更好的操纵性。最有效的NG-TI协议将进一步
经活体动物实验验证。我们将定性地比较目标,可能的场外影响,
电流消耗,以及NG-TI和标准TI的操纵性。我们还将确定可行性和
模拟在医疗应用中有用的距离的NG-TI刺激的电场参数。这个
效应将与神经元和神经组织的介电和生理特性联系起来,以建立预测
在大型动物和人体试验中的非侵入性脑深部刺激模型。这个项目将奠定基础
将NG-TI技术转化为疾病诊断和治疗技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei G Pakhomov其他文献
Andrei G Pakhomov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei G Pakhomov', 18)}}的其他基金
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:
10669767 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:
10515459 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
- 批准号:
8941895 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
- 批准号:
9278268 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
- 批准号:
8811947 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
- 批准号:
8636788 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
8099680 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
7984696 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
8500364 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
8298579 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
相似海外基金
Targeting Type I IFN signaling to promote recovery following brain trauma in aged animals
靶向 I 型干扰素信号传导促进老年动物脑外伤后的恢复
- 批准号:
10300752 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Targeting Type I IFN signaling to promote recovery following brain trauma in aged animals
靶向 I 型干扰素信号传导促进老年动物脑外伤后的恢复
- 批准号:
10618773 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Development of a Frontier Magnetic Resonance (MR) Imaging Technology As a Tool for Visualization and Quantified Vascular-Feature Measurement for Use in Brain and Behavioral Research on Small Animals
开发前沿磁共振 (MR) 成像技术作为可视化和量化血管特征测量的工具,用于小动物的大脑和行为研究
- 批准号:
10384839 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
The effects of fear on the brain in wild animals
恐惧对野生动物大脑的影响
- 批准号:
563879-2021 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
University Undergraduate Student Research Awards
Head-mounted Photoacoustic Imaging of Deep-brain Neural Activities in Freely Behaving Animals
自由行为动物深脑神经活动的头戴式光声成像
- 批准号:
9924909 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Probing brain network dynamics in freely behaving animals
探索自由行为动物的大脑网络动态
- 批准号:
RTI-2021-00094 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Research Tools and Instruments
ShEEP Request for Ultrafast Ultrasound for Brain Imaging in Freely Behaving Animals
ShEEP 请求使用超快超声波对自由行为的动物进行脑成像
- 批准号:
9908895 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Bio-ultrasound pharmacy: micro-diaphragm development and its application to the brain of awake animals
生物超声药剂学:微隔膜开发及其在清醒动物大脑中的应用
- 批准号:
18K19794 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Deciphering brain organisation through optogenetic manipulation in freely moving animals
通过光遗传学操作解读自由活动动物的大脑组织
- 批准号:
511913-2017 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
University Undergraduate Student Research Awards
Administrative Supplement: Anion channelrhodopsin-based viral tools to manipulate brain networks in behaving animals
行政补充:基于阴离子通道视紫红质的病毒工具可操纵行为动物的大脑网络
- 批准号:
9268890 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别: